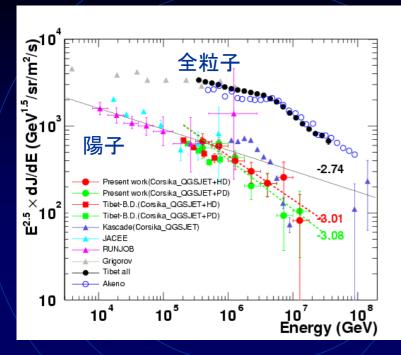
チベット水チェレンコフミューオン観測装置計画 - Tibet Muon Detector (MD) Project -

東京大学宇宙線研究所 川田和正 For the Tibet AS γ Collaboration

The Tibet AS γ Collaboration

M.Amenomori,¹ S.Ayabe,² X.J.Bi,³ D.Chen,⁴ S.W.Cui,⁵ Danzengluobu,⁶ L.K.Ding,³ X.H.Ding, ⁶ C.F.Feng,² Zhaoyang Feng,³ Z.Y.Feng,⁶ X.Y.Gao,⁶ Q.X.Geng,⁶ H.W.Guo,⁶ H.H.He,³ M.He,² K.Hibino,¹⁰ N.Hotta,¹¹ HaibingHu,⁶ H.B.Hu,³ J.Huang,¹² Q.Huang,⁶ H.Y.Jia,՞ F.Kajino,¹³ K.Kasahara,¹⁴Y.Katayose,⁴ C.Kato,¹⁵ K.Kawata,¹² Labaciren,⁶ G.M.Le,¹⁶ A.F. Li,² J.Y.Li,² H.Lu,³ S.L.Lu,³ X.R.Meng,⁶ K.Mizutani,²,¹² J.Mu,⁶ K.Munakata,¹⁵ A.Nagai,¹⁶ H.Nanjo,¹ M.Nishizawa,¹ゅ M.Ohnishi,¹² I.Ohta,²⁰ H.Onuma,² T.Ouchi,¹⁰ S.Ozawa,¹² J.R.Ren,³ T.Saito,²¹ T.Y.Saito,¹² M.Sakata,¹³ T.K.Sako,¹² T.Sasaki,¹⁰ M.Shibata,⁴ A.Shiomi,¹² T.Shirai,¹⁰ H.Sugimoto,²² M.Takita,¹² Y.H.Tan,³ N.Tateyama,¹⁰ S.Torii,¹² H.Tsuchiya,²³ S.Udo,¹² B. Wang,⁶ H.Wang,³ X.Wang,¹² Y.G.Wang,ˀ H.R.Wu,³ L.Xue,ˀ Y.Yamamoto,¹³ C.T.Yan,¹² X.C.Yang,⁶ S.Yasue,²⁴ Z.H.Ye,¹⁶ G.C.Yu,⁶ A.F.Yuan,⁶ T.Yuda,¹⁰ H.M.Zhang,³ J.L.Zhang,³ N.J.Zhang,ႛ X.Y.Zhang,ˀ Y.Zhang,³ Yi Zhang,³ Zhaxisangzhu,⁶ and X.X.Zhou ⁶

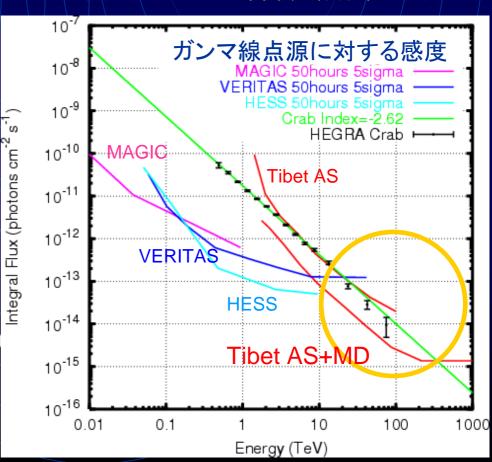

- (1) Dept. of Phys., Hirosaki Univ., Hirosaki, Japan
- (2) Dept of Phys., Saitama Univ., Saitama, Japan
- (3) Key Lab of Particle Astrophysics, IHEP, CAS, Beijing, China
- (4) Fac. of Engin., Yokohama National Univ., Yokohama, Japan
- (5) Dept. of Phys., Hebei Normal Univ., Shijiazhuang, China
- (6) Dept. of Math. and Phys., Tibet Univ., Lhasa, China
- (7) Dept. of Phys., Shandong Univ., Jinan, China
- (8) Inst. of Modern Phys., South West Jiaotong Univ., Chengdu, China
- (9) Dept. of Phys., Yunnan Univ., Kunming, China
- (10) Fac. of Engin., Kanagawa Univ, Yokohama, Japan
- (11) Fac. Of of Ed., Utsunomiya Univ., Utsunomiya, Japan
- (12) ICRR., Univ. of Tokyo, Kashiwa, Japan

- (13) Dept of Phys., Konan Univ., Kobe, Japan
- (14) Fac. of Systems Engineering, Shibaura Inst. of Tech., Saitama, Japan
- (15) Dept. of Phys., Shinshu Univ., Matsumoto, Japan
- (16) Center of Space Sci. and Application Research, CAS, Beijing, China
- (17) Advanced Research Inst. for Sci. and Engin., Waseda Univ., Tokyo, Japan
- (18) Advanced Media Network Center, Utsunomiya University,
 Utsunomiya, Japan
- (19) National Inst. of Info., Tokyo, Japan
- (20) Tochigi Study Center, Univ. of the Air, Utsunomiya, Japan
- (21) Tokyo Metropolitan College of Industrial Tech., Tokyo, Japan
- (22) Shonan Inst. of Tech., Fujisawa, Japan
- (23) RIKEN, Wako, Japan
- (24) School of General Ed., Shinshu Univ, Matsumoto, Japan

内容

- 1. イントロダクション
- 2. 装置概要
 - ・空気シャワー観測装置
 - ・ 水チェレンコフミューオン観測装置
- 3. 予想感度シミュレーション
- 4. 100TeV領域ガンマ線天文学への展望
- 5. コスト
- 6. まとめ

1. イントロダクション


>10 TeV のガンマ線観測が重要

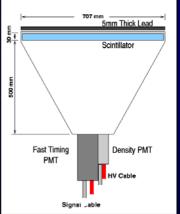
チベット空気シャワー観測装置の ガンマ線感度をミューオン観測装置で大幅改善

Tibet 高度でシャワーコア 100m 以内に作られるミューオン数(おおざっぱ) ~0.1 個 / 10 TeV ガンマ線 ~10 個 / 10 TeV 陽子 SNRなどでの(斜め)衝撃波加速により 宇宙線を100~10000TeV程度まで加速可能

宇宙線+星間物質 $\rightarrow \pi^0 + \cdots \rightarrow 2\gamma$ 10~1000TeVガンマ線にスペクトラムのカットオフ?

HESSによるTeVガンマ線の観測 10TeV付近までハードな冪関数(微分冪~-2)

2. 装置概要: チベット空気シャワー観測装置 (Tibet AS)


水チェレンコフミューオン観測装置(イメージ)↑

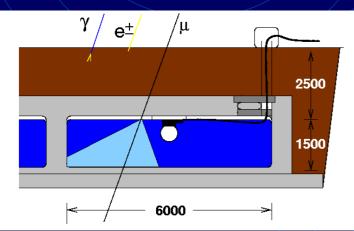
中国 チベット 羊八井 (90.522° E, 30.102° N) 標高4300m

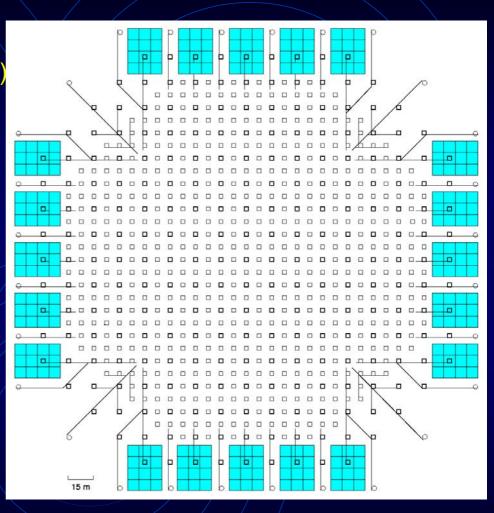
シンチレーション検出器数 空気シャワー有効面積 最頻エネルギー 角度分解能

視野

0.5m²×789台 37000m² ~3 TeV ~1.0° @ 3 TeV ~0.2° @ 100 TeV ~1.5 sr

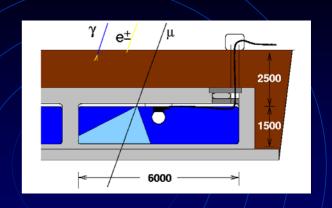
 \rightarrow 空気シャワー中の電磁成分($e^{+/-}$, γ)を主に観測し 一次宇宙線エネルギー、方向、空気シャワーのコア位置などを測定


チベット水チェレンコフミューオン観測装置 (Tibet MD)


地下 2.5m (物質厚 ~515g/cm²~19X₀) 6m×6m×水深1.5m 水槽 240台 20"ΦPMT 1本 (HAMAMATSU R3600)

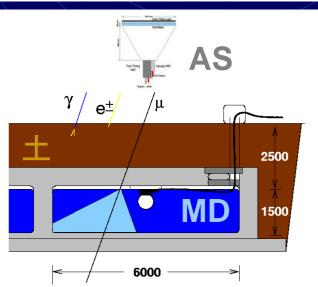
水槽材質: コンクリート 白色エポキシ樹脂塗装

合計 8640m²



→空気シャワー中のミューオン数を測定し、ガンマ線/核子選別

水チェレンコフ観測装置


シンチレーション検出器より安価 チェレンコフ閾値 (水中電子 750keV)+厚型検出器で、 低エネルギーバックグラウンドの e^{+/-}, γ は見えない →ミューオン観測には良い装置

	Milagro	SK(アンチ)	Tibet MD	
使用PMT	8"φ PMT	8"φ PMT	20"φ PMT	
検出器面積	80mx60m 深さ8m (上4800m²/下2000m²)	SK全表面積~7400m ² 厚さ2.5m	8640m² 深さ1.5m	
1 ユニット	1PMT@2.8m × 2.8m	2PMTs@6m²	1PMT@36m ²	
受光面積率	0.4%	0.52%	0.54%	
PMT本数	上層: 水深 1.4m、450本 下層: 水深 6.0m、273本	1885本	240本	

3. 予想感度シミュレーション

□ 空気シャワー発生→Corsika Ver.6.204

宇宙線 X 0.3TeV-10PeV, Crab軌道

化学組成スペクトラムを考慮

核子相互作用モデル: QGSJET01c

ガンマ線 0.3TeV-10PeV, Crab軌道

 $\propto E^{-2.6}$

コア位置 半径300m以内にランダム入射

ロシンチレーション検出器 (Tibet AS)→Epics UV8.00 空気シャワーの粒子数、コア位置、方向などを推定

□ 土+水チェレンコフ検出器 (Tibet MD)→GEANT4 8.0

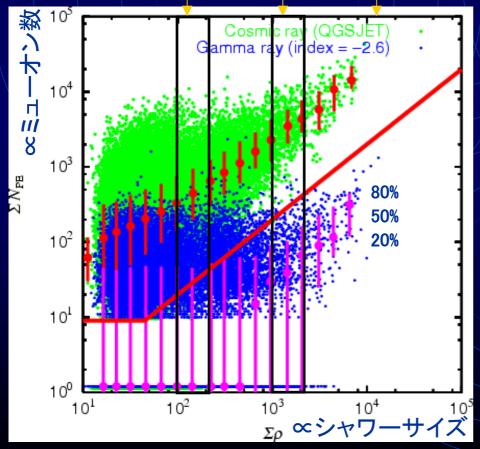
壁面での反射率 70%(一様反射)

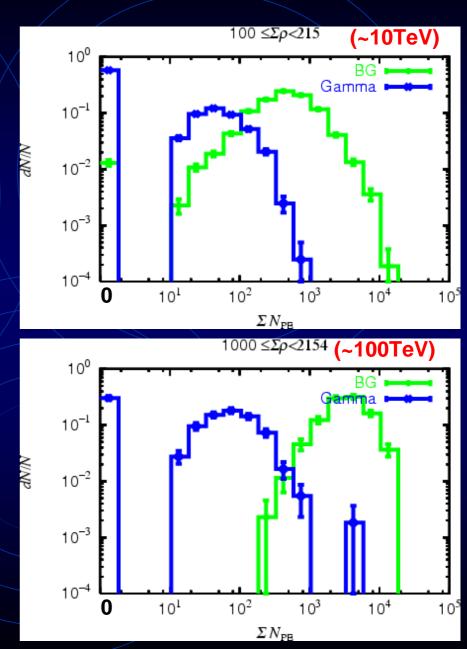
水中での減衰長~40m@400nm (波長依存)

PMT量子効率 ~20%@400nm (波長依存)

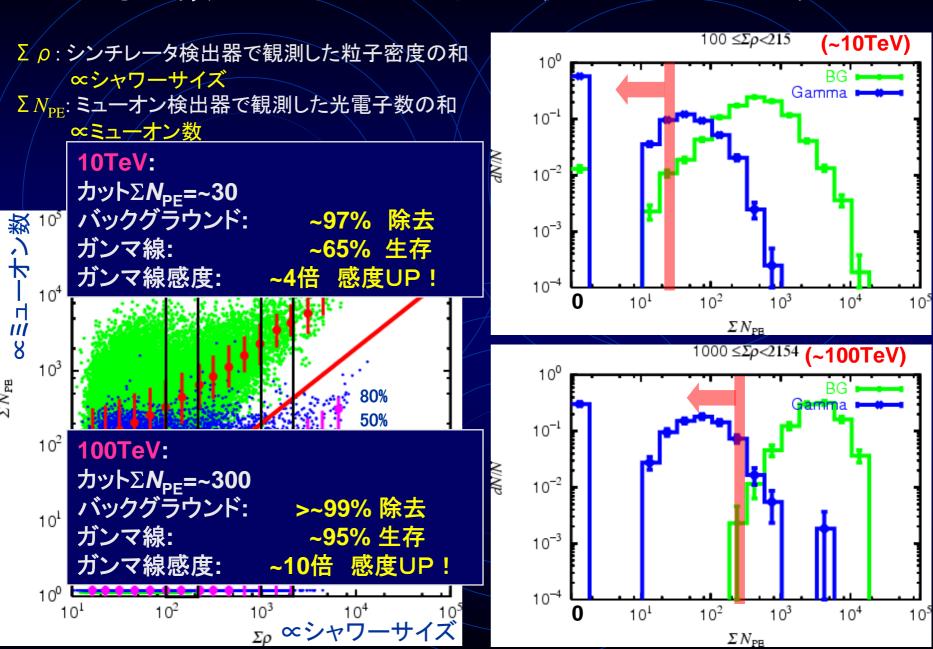
ロ アクシデンタルミューオン

 $300 \text{ Hz/m}^2 \times 8640 \text{ m}^2 \times 200 \text{ ns}$

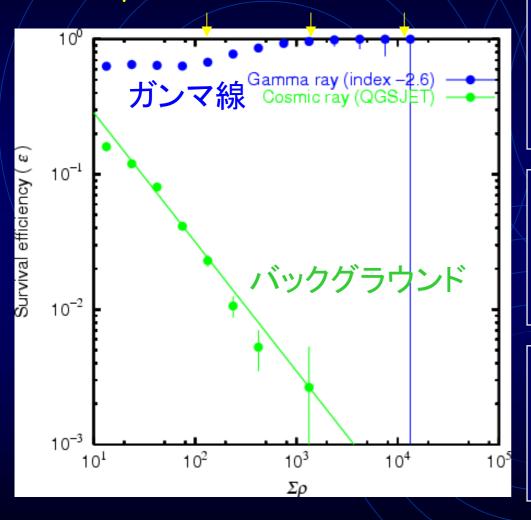

→0.5ミューオン/空気シャワー


ポワソンノイズとして考慮

ミューオン数VSシャワーサイズ(シミュレーション)


Σρ: シンチレータ検出器で観測した粒子密度の和 **ωシャ**ワーサイズ ΣN_{PE}: ミューオン検出器で観測した光電子数の和 **ωミューオン数** (MD検出器の閾値 N_{PE}>10 光電子)

10TeV 100TeV 1000TeV



ミューオン数VSシャワーサイズ(シミュレーション)

カット後の生存率(シミュレーション)

Εγ: 10TeV 100TeV 1000TeV

10TeV:

カット $\Sigma N_{PF} = ~30$

バックグラウンド: ~97% 除去

ガンマ線: ~65% 生存

ガンマ線感度: ~4倍 感度UP!

100TeV:

カット $\Sigma N_{PF} = ~300$

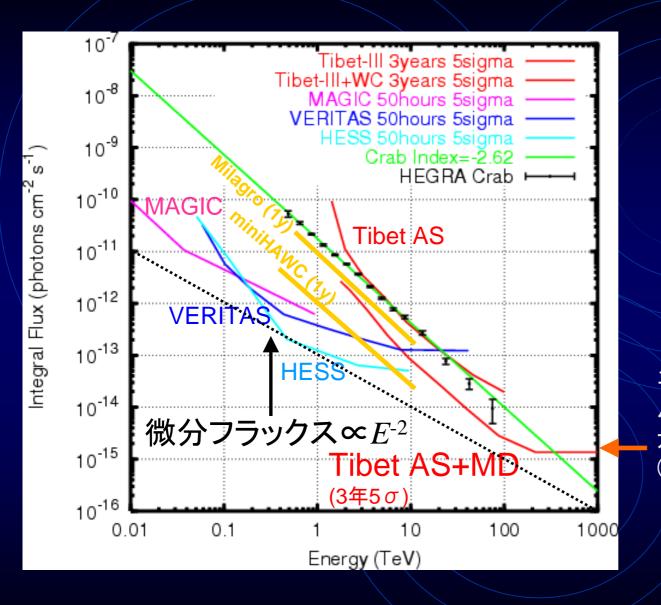
バックグラウンド: >~99% 除去

ガンマ線: ~95% 生存

ガンマ線感度: ~10倍 感度UP!

1000TeV:

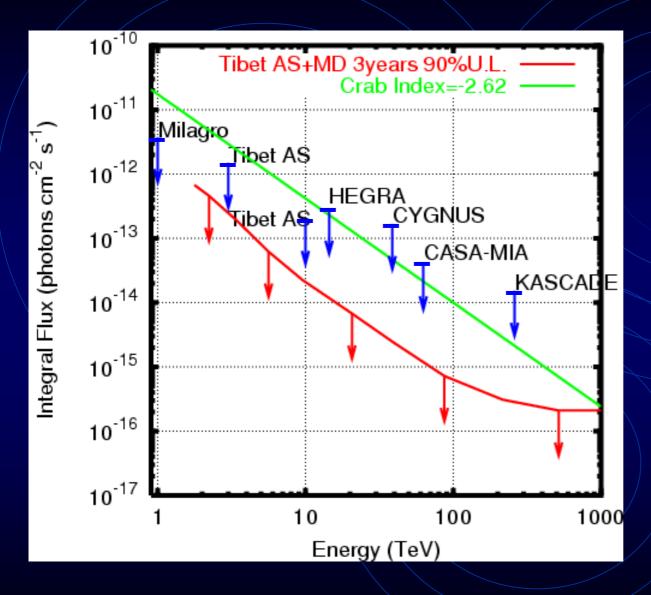
カット $\Sigma N_{PF} = \sim 3000$


バックグラウンド: >~99.9% 除去

ガンマ線:

~99% 生存

ガンマ線感度: バックグラウンドフリー


ガンマ線点源に対する予想感度

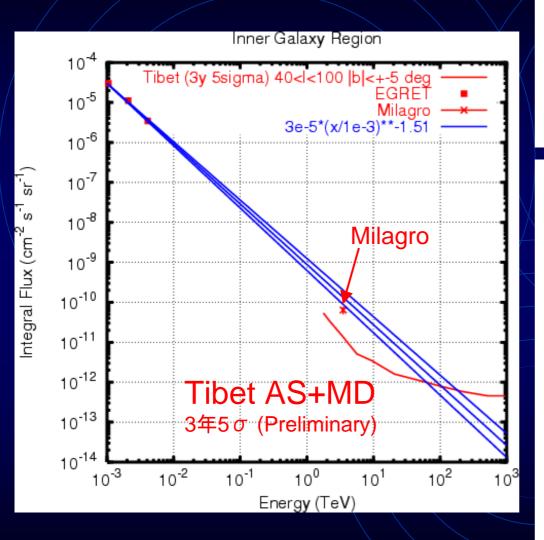
Tibet AS アレイ 37,000m² + Tibet MD アレイ 8,640m² Crab軌道

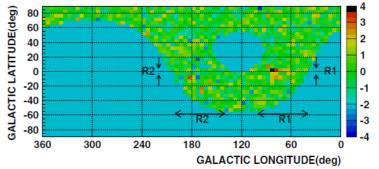
平坦領域 (> 200TeV) バックグラウンド << 1イベント ガンマ線15個の感度 (ポワソン 5σ)

北天サーベイ 90% フラックス上限値

Antoni et al, ApJ, 608, 865 (2004) Atkins et al, ApJ, 608, 680 (2004) Amenomori et al, ApJ, 633, 1305 (2005)

4. 100TeV領域ガンマ線天文学への展望


	Tibet AS+MD ~100 TeV	HESS ~200 GeV
観測地	30N-90E	23S-16E
視野	~1.5 sr	~0.02 sr
稼働率	~90%	~10%
角度分解能	~0.2°	~0.1°
エネルギー分解能	~40%	~20%
バックグラウンド 除去率	~99%	~99%
感度 (RX J1713 Unit PL Index = -2.19)	~5% RXJ1713 (3年5 <i>o</i>)	~1% RXJ1713 (50 時間 5σ)
観測天体数	?	>20


TeV ガンマ線天体カタログ 北天領域

天体名 クラス	天頂角(チベット)[゜]
Crab Nebula PWN	8
Cas A SNR \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	29
TeV J2032+4130 SNR? (vicinity of Cyg X-3)	11
Milagro Region Diffuse γ	10
HESS J1837-069 SNR? (G25.5+0.0?, AX J1838-0	655?) /37 /
HESS J1834-089 SNR? (G23.3-0.3 / W41?)	39
LS I +61 303 XRB	31 /
M87 AGN (z=0.00436)	18
Mrk 421 AGN (z=0.031)	8
Mrk 501 AGN (z=0.034)	10
1ES 1959+650 AGN (z=0.047)	35
H 1426+428 AGN (z=0.129)	13
PG 1553+113 AGN (z>0.25?)	11

100TeV領域で既知天体からのガンマ線は観測可能か?

MilagroによるDiffuseガンマ線

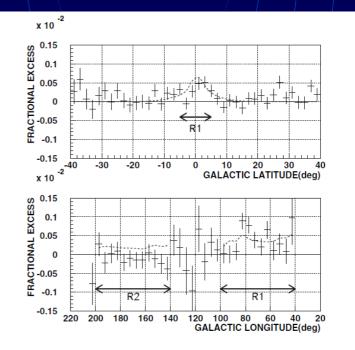
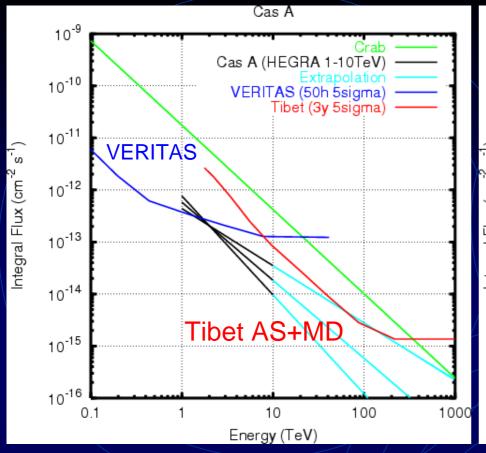
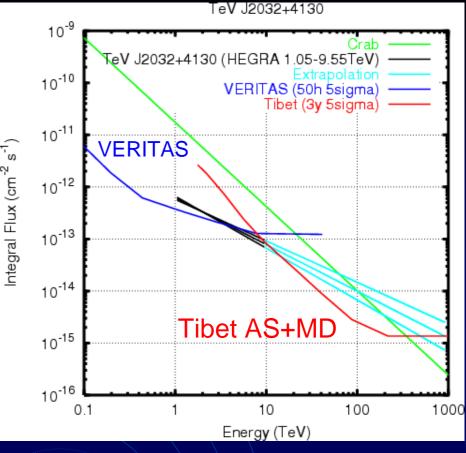
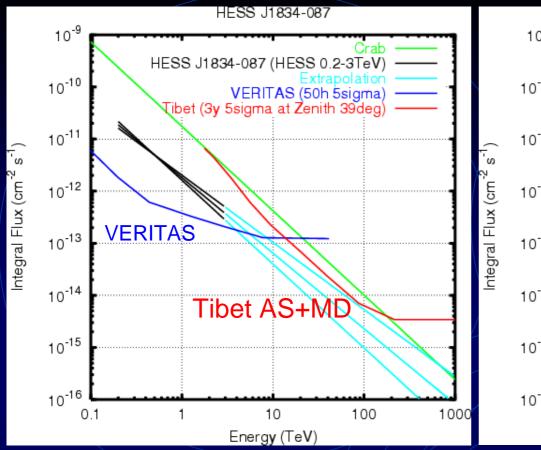
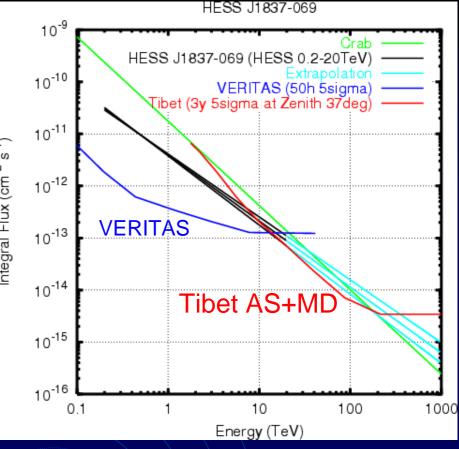




FIG. 3. Profiles of the fractional excess in latitude for the R1 longitude band $l \in (40^{\circ}, 100^{\circ})$, and in longitude for the latitude band $|b| < 5^{\circ}$ of R1 and R2. The dashed lines show the EGRET source shape.


Cas A


電波で最も明るい シェル型 SNR 距離 ~3.4 kpc 年齢 ~300 years HEGRA観測時間 ~232 hours フラックス ~3.3% Crabs IC+bremsstrahlung? π⁰ 崩壊?

TeV J2032+4130

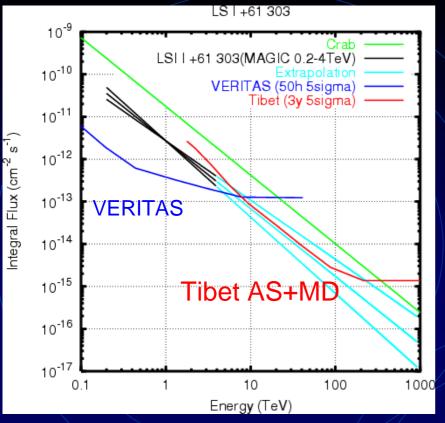
未同定TeVガンマ線源 Cyg X-3 in Cyg OB2の近く HEGRA観測時間 ~158 hours 広がったガンマ線源 ~6.2′ π⁰ 崩壊?

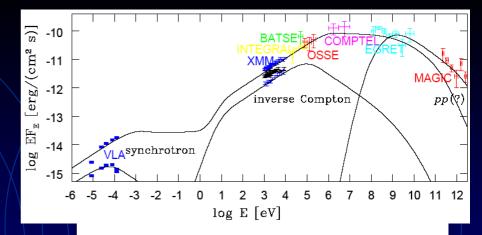
17

HESS J1834-087

同定天体 G23.3-0.3 シェル型SNR 距離 ~4.8 kpc

天頂角(チベット)~39°


天頂角(チベット) ~ 37°

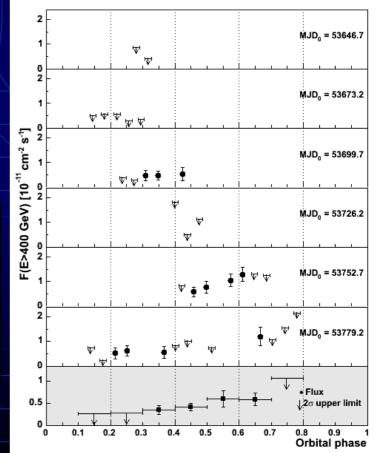

HESS J1837-069

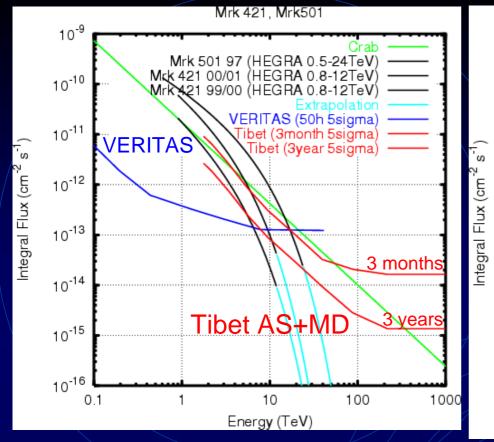
18

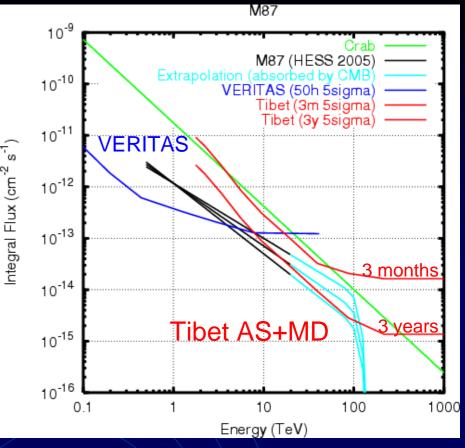
同定天体 AX J1838 ? (X線)

G25.5+0.0? (SNR)

 μ QSR Be star


天頂角(チベット)~31°


LS I +61 303

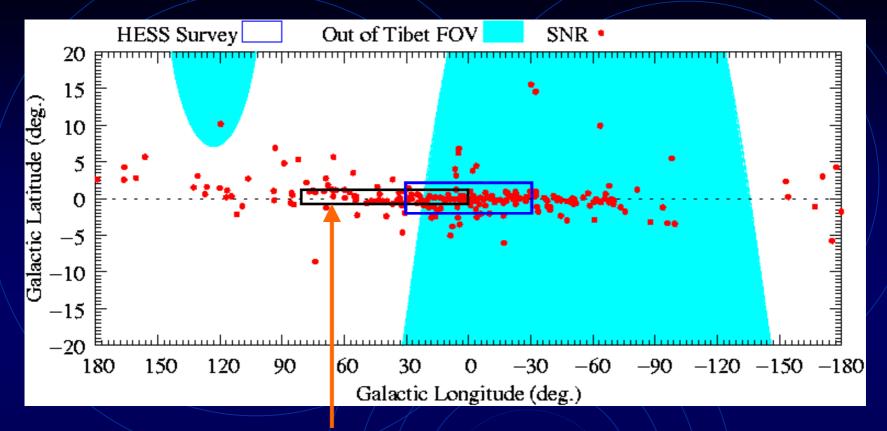

高質量 XRB

距離 ~2 kpc

π⁰崩壊?

Mrk 421 Mrk 501

AGN (BL Lac) z=0.031 (Mrk 421) z=0.034 (Mrk 501) HEGRA数ヶ月の平均スペクトラム SSC or ERC or PIC model?

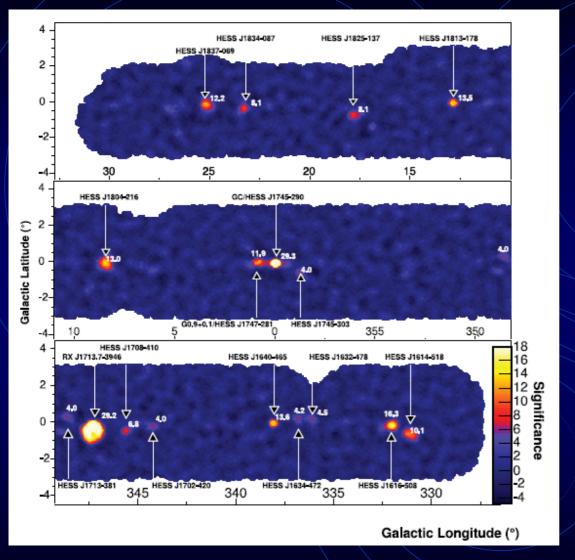

Aharonian et al, A&A, 349, 11 (1999)

M87 AGN (FR-I) z=0.00436 ~16 Mpc I = 122.4, b = -50.5

天頂角(チベット) ~18°

Beilicke et al, New Astro. Rev., 48, 407 (2004)

HEGRA銀河面サーベイ(2002年)



他のガンマ線源は? HEGRA銀河面サーベイの上限値: 0.1-数Crabs

Alaronian et al, A&A, 395, 803 (2002)

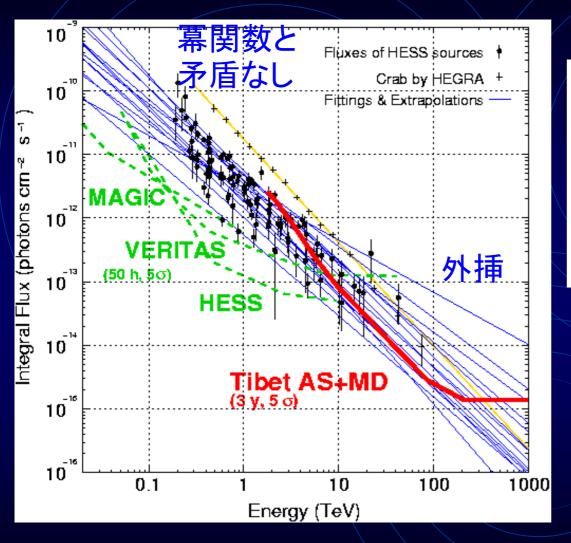
さらなる広域・高感度サーベイが必要!

HESS銀河面サーベイ ~2%Crab (2006年)

Aharonian et al, ApJ, 636, 777 (2006)

17個のガンマ線源検出 (14個の新ガンマ線源)

角度分解能 HESS → ~0.1° (>100GeV) Tibet → ~0.2° (>100TeV)


HESS銀河面サーベイ ~2%Crabs (2006年)

Aharonian et al, ApJ, 636, 777 (2006)

```
Flux
              Index Size
                          Counterpart / other names
Source
               (E-F) (arcmin)
(HESS J)
         (C.U.)
1614-518
               2.46 12
         25%
         19% 2.35 8
                          PSR J1617-5055 ? (PWN)
1616-508
         12% 2.12 8
                          IGR J16320-4751, AX J163252-4746 ? (XRB/UID)
1632-478
1634-472
              2.38 7
                          G337.2+0.1 ?,IGR J16358-4726 (SNR/XRB)
         6%
              2.42 2
                          G338.3-0.0 ? 3EG J1639-4702 ? (SNR/UID)
1640-465
         9%
1702-420
              2.31 5
         7%
1708-410
              2.34 3
         4%
1713-381 2%
                          G348.7+0.3? (SNR)
              2.27 4
         66% 2.19 15
                          RX J1713.7-3946, G347.3-0.5 (SNR)
1713-397
                          Sgr A* / Sgr A East ? (SNR/BH)
              2.20 <3
1745-290
         5%
                          3EG J1744-3011 ? (UID)
1745-303
         5%
              1.82 9
         2% 2.40 <1.3
                          G0.9+0.1 (PWN)
1747-281
                          G8.7-0.1, PSR J1803-2137 ? (SNR/PWN)
1804-216
         25% 2.72 12
1813-178
         6% 2.09 2
                          G12.82-0.02, AX J1813-178? (SNR)
         17% 2.46 10
                          PSR J1826-1334 / 3EG J1826-1302 ? (PWN/UID)
1825-137
               2.45 5
                          G23.3-0.3 / W41 ? (SNR)
1834-087
         8%
                          G25.5+0.0 ?, AX J1838-0655 ? (SNR/UID)
1837-069
         13%
               2.27 5
```

SNR ~8 PWN ~3 XRB ~2 UID ~1 Unknown ~3

HESS天体のエネルギースペクトラム

Aharonian et al, ApJ, 636, 777 (2006)

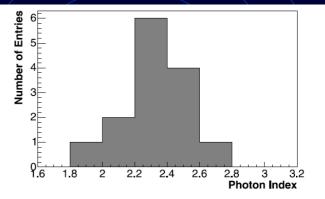
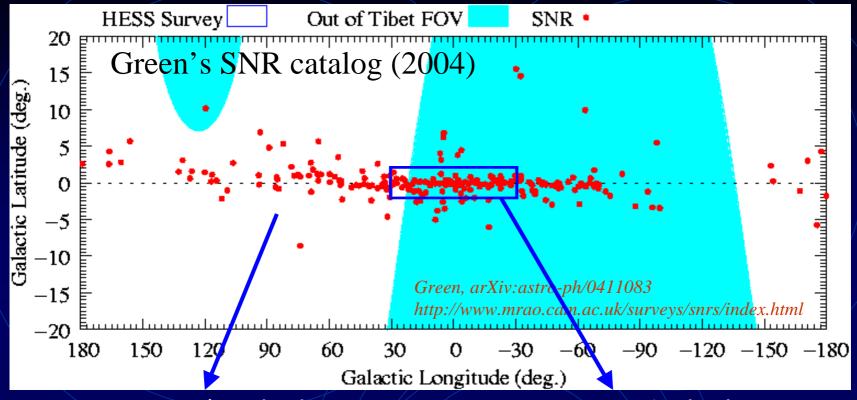



Fig. 8.—Distributions of the photon index of the new sources. The mean photon index is 2.32 with an rms of 0.2.

ハードな冪 ~ -2.3

(もし南天に建設すれば、、、) ほとんどのHESS天体を Tibet AS+MDで観測可能

北天領域における検出可能な未知ガンマ線源数の予測

Tibet 視野領域 86 SNRs HESSサーベイ領域 82 SNRs

期待数 >~10 新ガンマ線天体? 100 TeV領域

検出数 14 新ガンマ線天体 TeV領域

5. コスト

項目	備考	単価 (円)	数量	合計(円)
/ PMT/	20 ¢ PMT	60万	240	1.44億
エレクトロニクス	ADC, TDC, HV, ケーブル	10万	240	0.24億
防水水槽	防水材、建設費 (コンクリート水槽)	3万/m²	8640m ²	2.6億
循環•浄水装置	MFフィルター			0.18億
その他				+α
合計				4.46億 + α

~5億円

6. まとめ

Tibet MD Project

37000 m² チベット空気シャワー観測装置+ 8640 m² 水チェレンコフミューオン観測装置 →100TeV領域ガンマ線の観測

シミュレーションによる予想感度

 $F(>100 TeV) \sim 2 \times 10^{-15} cm^{-2} s^{-1}$

→従来より1桁以上ガンマ線に対する感度が改善

北天100TeV領域のガンマ線候補天体:

観測可能天体: Crab, TeV J2032+4130,

Diffuse γ from Milagro region

HESS J1837-069, Mrk 421

面白そう: Cas A, M87, HESS J1834-089, Mrk 501

LS I +61 303

予想未知天体数: >~10個