

吉田健二 芝浦工業大学

はじめに

• 宇宙線中の高エネルギー電子

- 核相互作用がなく低質量
- 銀河系内伝播中のエネルギー損失:
 - シンクロトロン放射、逆コンプトン散乱過程
- 銀河系内の電子の伝播:
 - 原子核成分に比べて取り扱いやすい伝播過程

• 宇宙線電子観測

=> 宇宙線の起源、加速、伝播機構の解明へ

宇宙線電子エネルギースペクトル の概観 10^{4} 宇宙線電子と陽 10^{2} **Protons** 10^{0} 子のエネルギー GeV⁻¹) 10^{-2} スペクトルの比較 <mark>۲</mark> 10^{-4} 10⁻⁸ Electrons 10-12 10⁻¹⁴ 10^{2} 10¹ 10^{3} 10^{4} 10^{5} 10^{0} 10^{6} Kinetic Energy (GeV)

- 電子フラックス: 陽子の~1% @10GeV
- 電子エネルギースペクトル:陽子より急なベキ型

Index: ~-3.0 for e, -2.7 for p

2006年8月31日

高エネルギー電子観測

- 1960年代以降、実質的な電子観測
 - Earl 1961, Bleeker 1965, Daniel et al. 1965, ...
- 高エネルギーの電子観測
 - 電子フラックスの急激な減少(ベキ~-3.0)
 - 陽子バックグラウンドの増加
- ・観測装置に要求される性能
 - 大きな幾何学的因子 (SΩ)
 - 長時間の観測
 - 高い陽子バックグラウンド除去能力

電子観測装置

• マグネット・スペクトロメータ

電子と陽電子を識別して観測
 カロリメータ(マグネット不使用)
 電子+陽電子を識別せず観測

2006年8月31日

Balloon-borne superconducting magnet spectrometer Golden et al. 1984

- 気球観測 (1976)
 From Palestine, U.S.A.
 観測時間 = 19hr
 観測高度: ~5.8g/cm²
 SΩ = 324 cm²sr
- e- (e+と識別)

Balloon-borne magnet spectrometer (MASS-91) Grimani et al. 2002

- 気球観測 (1991)
 - From Fort Sumner, U.S.A.
- 観測時間 = ~10hr
- 観測高度 = ~5.8g/cm²
- SΩ = 182cm²sr
- e-, e+(識別)

2006年8月31日

CAPRICE94

Boezio et al. 2000

HEAT

DuVernois et al. 2001

気球観測 (1994,1995)
From Fort Sumner, Lynn Lake
観測時間 = 55hr
観測高度 = 5~6g/cm²
SΩ = 495cm²sr
e-, e+(識別)

2006年8月31日

AMS-01

Aquilar et al. 2002

スペースシャトル (1998)
51.7 deg orbit (Discovery)
観測時間 = ~1.8x10²hr
観測高度 = 320-390km
SΩ = ~1.0x10³cm²sr
e-, e+(識別)

Transition radiation/shower detector Tang 1984

- 気球観測 (1980)
 From Palestine, U.S.A.
 観測時間 = ~20hr
 観測高度 = ~4g/cm²
 SΩ = ~1x10³ cm²sr
- e-+e+(識別せず)

Emulsion Chamber Kobayashi et al. 2003

- 気球観測13回 (1968-2001)
 - From Sanriku, Japan, etc.
- 観測時間 = 270hr
- 観測高度 = ~4-9 g/cm²
- $S\Omega = ~3.8 \times 10^3 \text{ cm}^2 \text{ sr}$
- e-+e+(識別せず)

2006年8月31日

BETS

Torii et al. 2001

気球観測 (1997,1998)
From Sanriku, Japan
観測時間 = ~13hr
観測高度 = ~5~6g/cm²
SΩ = ~320cm²sr
e- + e+ (識別せず)

ATIC-2

Chang et al. 2005

- 気球観測 (2002)
 - From McMurdo, Antarctica
- 観測時間 = ~4.0x10²hr
- 観測高度 = 5.2g/cm²
- $S\Omega = ~1.4x10^{3} cm^{2} sr$
- e-+e+(識別せず)

2006年8月31日

観測間で電子フラックスのファクター2~3の違い
100GeV以上では2,3の気球観測のみ

2006年8月31日

超新星起源の一次電子の加速と伝播

SN爆発で加速される電子

SNR Cas Aの X線画像

 SNRsのX線観測: 高エネルギー電子の存在
 SNRsのガンマ線観測: 電子起源?ハドロン起源? 電子の銀河系内伝播 Halo Electron T=+h Halo Electron

(拡散モデル)
 ↓
 宇宙線電子の観測

Z=-h

銀河系内の電子伝播

• 宇宙線電子のエネルギー損失

- 星間光子との逆コンプトン散乱
- 星間磁場 (B~6µG)とのシンクロトロン放射 => dE/dt = -bE²
- 宇宙線電子の寿命
 - T=1/(bE)=2.5x10⁵yr/E(TeV)
- 平均伝播距離

R=(2DT)^{1/2}=0.4~0.8kpc (@E=1TeV)

• 拡散係数: D=(1-4)x10²⁹(E/TeV)^{0.3}(cm²/s)

宇宙線電子の特徴

高エネルギーの電子(>1TeV)ほど、遠方(>1kpc)や古い(>10⁵yr)加速源からは地球近傍に到達できない。

- TeV領域では近傍の加速源(r<1kpc, t<10⁵yr)からの 電子の寄与が大きくなる。
 - 電子エネルギースペクトルに特徴的な構造
 - 電子の到来方向に異方性

• 地球近傍の電子加速源の同定、加速機構の解明

- Ne: 電子密度
- r: 電子加速源までの距離
- Qe: 加速源での電子スペクトル E^{-γ}exp(-E/Ec)
- ハローの厚さ: h=3kpc
- 境界条件: Ne=0 at z=+-h
- 拡散係数:

D=(1~4)x10²⁹(E/TeV)^{0.3}(cm²/s)(TeV領域)

- 超新星爆発の頻度: 1/30yr
- 超新星爆発での電子エネルギー:

1x10⁴⁸ erg (陽子の~1%@10GeVに相当)

2006年8月31日

加速源(SNRs)での 電子エネルギースペクトル

SNRでの電子エネルギー スペクトル E^{-γ}exp(-E/Ec) γ = 2.1~2.4 Ec = 10~100TeV

LIMITS						
	v _{rolloff}		$E_{\max}[(B/10\mu G)]^{1/2}$			
Object	(10 ¹⁶ Hz)	(keV)	(ergs)	(TeV)		
Kes 73 ^a	150	6	290	200		
Cas A	32	1	130	80		
Kepler	11	0.5	79	50		
Tycho	8.8	0.4	70	40		
G352.7-0.1	6.6	0.3	60	40		
SN 1006 ^b	6	0.2	57	40		
3C 397	3.4	0.1	43	30		
W49 B	2.4	0.1	36	20		
G349.7+0.2	1.8	0.07	31	20		
3C 396	1.6	0.07	30	20		
G346.6-0.2	1.5	0.06	29	20		
3C 391	1.4	0.06	28	20		
SN 386 ^a	1.2	0.05	26	20		
RCW 103 ^a	1.2	0.05	26	20		

ROLLOFF FREQUENCY AND MAXIMUM ELECTRON ENERGY UPPER

(Reynolds et al. 1999)

2006年8月31日

拡散係数と電子スペクトル

D=1x10²⁹cm²s⁻¹@1TeV

D=2x10²⁹cm²s⁻¹@1TeV

=> 拡散係数Dにより電子エネ ルギースペクトルが変化

2006年8月31日

近傍の加速源(SNRs)

SNR	R(kpc)	T(yr)		104
SN185	0.95	$1.8 imes10^3$		
$\mathbf{S147}$	0.80	$4.6 imes 10^3$		103
HB 21	0.80	$1.9 imes10^4$	(bc)	10
$G65.3 {+} 5.7$	0.80	$2.0 imes10^4$	nce	
Cygnus Loop	0.44	$2.0 imes10^4$	Dista	10 ²
Vela	0.30	$1.1 imes 10^4$		
Monogem	0.30	$8.6 imes10^4$		-
Loop1	0.17	$2.0 imes10^5$		$10^{1} [D_{0} =$
Geminga	0.4	$3.4 imes 10^5$		10

加速源でのカットオフエネルギーと 電子スペクトル

2006年8月31日

SNRsからの電子放出時間の遅れ と電子スペクトル

SNRsからの放出時間の遅れ => TeV領域のフラックスに大きな変化

2006年8月31日

SNRsから連続的な電子放出の 場合の電子スペクトル

連続的な電子放出時間の平均<τ>: 連続的(0~τ)な電子放出のスペクトル =~ <τ>だけ遅れた電子放出のスペクトル

暗黒物質対消滅から発生する 電子・陽電子

SUSY Dark Matter

Kaluza-Klein Dark Matter

Kamionkwoski et al. (1991)

Cheng et al. (2002)

- 暗黒物質起源の特徴的なエネルギースペクトル
- 電子・陽電子観測による暗黒物質探索

2006年8月31日

まとめ

現在の観測

- 観測間で電子フラックスのファクター2~3の違い
- 2,3の気球観測しかない100GeV以上の観測
- 将来観測に対する要求
 - 高い統計精度で正確な電子観測
 - 10TeVまでのより高いエネルギーまでの観測

期待される成果

- 宇宙線の加速、伝播機構の解明
- 宇宙線加速源の同定、暗黒物質探索

CALETによる宇宙ステーションでの宇宙線観測計画

宇宙ステーションでの宇宙線観測:

- •電子: 1GeV-10TeV
- ・ガンマ線: 20MeV-10TeV
- •原子核:数10GeV-1000TeV

広い視野 (~ 45[°]) 大きな有効面積 (~ 0.5m²) 優れたエネルギー分解能 < 2% over 100GeV 高いハドロン除去能力 (~ 10⁶)

シンチファイバー/鉛からなるイメージング カロリメータ(IMC):
▶ 面積: ~1 m²
▶ 鉛厚さ: 4 r.l, 0.13 m.f.p
無機シンチレータ(BGO)からなる 全吸収型カロリメータ(TASC):
▶ 面積: ~0.5 m²
▶ BGO結晶厚さ: 32 r.l, 1.6 m.f.p
検出器重量: 1760 kg

2006年8月31日

1GeV-10TeVの一次電子を世界最高レベルの統計精度で観測

 宇宙線加速の標準シナリオである超新星爆発における 衝撃波加速モデルを検証
 銀河系内伝播の拡散モデルにおける拡散係数を確定

2006年8月31日

期待される電子(>1TeV)到来方向の分布

ー次電子非等方性のエネルギー依存性

2006年8月31日

CALET電子観測による 暗黒物質探索

2006年8月31日

CALETにより期待される 電子観測の成果

• E<10GeV

■ 太陽活動と電子フラックスの相関

E=10GeV-100GeV

- 宇宙線伝播機構
- 超新星爆発の頻度、エネルギー

E>100GeV

- 宇宙線電子加速源の同定
- 宇宙線加速機構
- 暗黒物質探索

2006年8月31日