Multi-Frequency Study of the Jet Activity in Blazars

Chiharu Tanihata

Department of Physics, University of Tokyo

ያዘ ዮ እ	「生み出すメカニズム」(ディスクとジェットに関する示喩)	時回災動にしいての議論 レレアの立ち上がり、立ち下がりを決める物理量 ・ 御迴ょれている特徴的なライトカーブ、 及バスペクトルを 	 (多波板イベンドン、「林岡と」を、参い相関) (Lev ブレーザー候補天体の観測) 	 Mrk421 (Mrk501) (Mrk501) 	- ASCAによるTeVブレーザーの長期連続観測 (7-10 days) - スペクトルの時間変動	● ライトカーブ	

ASCA 衛星を用いた 長期 観測

- 1998/4 : Mrk421 (z=0.031) 300ks (7 day)
- 2000/3 : Mrk501 (z=0.034) 400ks (10day)
- 2000/5 : PKS2155-304 (z=0.117) 400ks (10day)

Mrk501 image

Mrk501 Observation Planning (1日分)

Background<2%

Bit-M

Mrk421 (Multi-frequency campaign)

- 0.1-30keVに渡る過去にない
 高精度なスペクトルの決定
- ツソクロトロンピーク位置の決定
 (短い積分時間で)

 問欠的な流れ(シェル) 初期速度の違うシェルが衝突→衝撃波 Rees 1978 MNRAS Spada et al. 2001 MNRAS Sikora et al. 2001 MNRAS Sikora et al. 2001 ApJ 算細な計算 算細な計算 実際に観測とあわせたものはない (そもそもくらべる観測がなかっ また た) 	シェルの衝突という観点から時間変動を生 ■ 内部編載波	 観測結果 1 T_{cycle}~T_{flare} 2 Structure Function (T_{chr}) 3 ペデスタルがある 4 フレア成分はピークエネルギーが高い 	時間変動パターン
、 三つ氏数をすることを出目的とし、 バブレーギーに特定した簡単化し、 ドイをしくり、 三を見たきるかをついべる。	こみだすメカニズムを初めて説明する		く の 議 記

D_0 :シェル間の距離) $M_1 = M_2$ $N = N = M_2$	 仮定 初期速度の広がり:ガウス分 1回目の衝突のみ 1~ D. ローシェルの厚ま 	 ジェット内でのシェルの衝突を、 シェルのローレンジ因子(L) ある平均レート(~D⁰/c) へ L²>L¹の時、距離D で衝突し フレアの重ね合わせ→ライト 	モデン
I I I I I I I I I I	子 子 Tavig	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

時間変動の議論のまとめ

- T_{chr}=T_{flare}はジオメトリに支配される変動時間
- 時間変動の性質を再現
- 内部衝撃波: orが小さいという制限のみで、変動のメカニズムを ジェットの根元~放射まで、極めて自然に再現できる。
- ジェット内の活動性を反映するの物理量の見積もり(Mrk451の場合)
- シェルの大きさ:~10¹³ cm
- 噴出頻度:~5分に1度
- 衝突位置:中心核から~10¹⁷cm
- 小 学
- σ_{Γ} が小さい → $\Delta\Gamma, v_{s}$ が小さい
- 観測を再現するためには加速に使われるエネルギーはシェルの持つ エネルギーの0.01%以下になる(§7.4.3)
- 外部衝撃波も可能であるが、衝突位置の特定、などの細かい工夫が必 要。(§7.6)