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Accuracy of measurements 
of the oscillation parameters

Possible effects of 1-3 mixing should be taken into account



cos θ sin θ
- sin θ cos θU (θ) =

sin 2θ   
sin 2θm =                                                

( cos 2θ  − ε (x)) 2 +   sin2 2θ

sin 2θ   
sin 2θm =                                                

( cos 2θ  − ε (x)) 2 +   sin2 2θ

νm  = (ν1m, ν2m )T - eigenstates in matter 

νf = Um νmνf = Um νm

ε (x) =  

νf = (νe, νa )T  - flavor states 

Um = U(θm) Um = U(θm) 

Mixing angle
in matter

2EV 
∆ m2

Survival νe -> νe
probability:

Pee = 0.5 (1 + cos 2θm
0 cos 2θ)Pee = 0.5 (1 + cos 2θm
0 cos 2θ)

V(x) =  2 GFn(x)

θm
0 =  θm(x0) - mixing angle in matter in the production point



- ∆m(x)/2 - i dθm(x)/dx

i dθm(x)/dx ∆m(x)/2 
Hm(x) =                     

∆m(x) =             ( cos 2θ  − ε (x)) 2 +   sin2 2θ

id νm/dx =  Hm(x) νmid νm/dx =  Hm(x) νm νm  = (ν1m, ν2m )T 

∆ m2

2E 

Evolution equation
for the matter
eigenstates:

Adiabatic
approximation:    if dθm(x)/dx

∆m(x) 
<< 1

The off-diagonal terms 
can be neglected ->
equation splits 

Sad(x0 -> x) =   
e             0

0       e

Solution (S-matrix):

Φ(x) =       dy ∆m(y) 
iΦ(x)/2

-iΦ(x)/2

x

x0

γ =



ν2m 
ν1m

ν2m 
ν1m

ne

ν2  
ν1

ν2m  
ν1m

Non-oscillatory transition

Adiabatic conversion + oscillationsn0 >  nR

n0 >>  nR

n0 < nR

ν2  
ν1

ν2  
ν1

Small matter corrections

Resonance

P = sin2 θ

interference suppressedMixing suppressed

ν1m <−−> ν2m

A. Yu. Smirnov



P = sin2 θ +  cos 2θ cos2 θm
0 P = sin2 θ +  cos 2θ cos2 θm
0 

non-oscillatory part

Averaged survival probability
at the surface of the Sun

oscillations

θm
0 is the mixing angle in matter

in  the production point

The depth of oscillations:  

A =  sin 2θ sin 2θm
0A =  sin 2θ sin 2θm
0

At the detector:

Pdet = P  +  ∆PregPdet = P  +  ∆Preg

Earth regeneration 



dθm(x’)
dx’

S(x0 -> x) =  C (x) Sad (x0 -> x)   S(x0 -> x) =  C (x) Sad (x0 -> x)   

e                     c(x) e

- c(x)*e                e

iΦ(x)/2 -iΦ(x)/2

x

x0

Search for 
the solution
in the form

C (x) = 1         c(x) 
-c(x)*    1

Explicitly:
S(x0 -> x) =     

-iΦ(x)/2iΦ(x)/2

Inserting S(x0 -> x) 
in the evolution equation 

c(x) gives the amplitude of transition between the eigenstates

Differential
equation for c(x)

Solve the 
equation

c(x) = - dx’ exp   i    dx’’ ∆m(x’’)
x

x’

phase Φ(x’ -> x)

Applications
to the Sun and 
the Earth



c(x0 -> xf) =  -i γ (x) exp [ iΦ(x -> xf)] 

Pee = 0.5 [1 + (1 - 2Pc) cos2θm
0 cos2θ] Pee = 0.5 [1 + (1 - 2Pc) cos2θm
0 cos2θ] 

Pc = |c(x0 -> xf)|2 - jump probability (probability of ν1m<-> ν2m)

Inside the Sun: smooth density profile - integration can be done 
xf

x0

Since at the surface  V = 0 , the lower limit of integration is relevant

Pc = |γ (x0) |2 =                 K(x0)2 

With non-adiabatic
corrections:

lm(x0) 
4πh(x0) K =                         ~ 1 ∆m2 V sin 2θ

2E ∆m
2

Numerically: 

lm =  4π/ ∆m h = V (dV/dx)-1

Pc = (10-9 - 10-7 )  (E/10 MeV)2

Negligible, still much large than the double exponential formula:   10-400

2



Regeneration 
factor:

1). Incoherent fluxes of ν1 and ν2 arrive 
at the surface of the Earth
1). Incoherent fluxes of ν1 and ν2 arrive 
at the surface of the Earth 2).  In  matter the mass 

states oscillate
2).  In  matter the mass 

states oscillate 3). the  mass-to-flavor 
transitions,  e.g.  ν2 --> νe
are relevant

3). the  mass-to-flavor 
transitions,  e.g.  ν2 --> νe
are relevant

Pee =  0.5[ 1 +  cos 2θm
0 cos 2θ ] - cos2θm

0fregPee =  0.5[ 1 +  cos 2θm
0 cos 2θ ] - cos2θm

0freg

4). The oscillations proceed 
in the weak matter regime:

4). The oscillations proceed 
in the weak matter regime:

ε (x) =                << 1 

P2e = sin2θ + fregP2e = sin2θ + freg

2EV(x) 
∆m2



freg = P2e  - sin2θ

ν2 --> νeν2 --> νe

2EV(R)  
∆m2

freg = ε (R) sin22θ sin2 [Φm(x0-> xf)/2]  +  sin 2θ Re{c(x0 -> xf)}

Regeneration  factor in the first approximation in ε : 

P(ν2 --> νe) = |<νe| U(θmR) S(x0 -> xf) U+(θmR) U(θ) |ν2> |2P(ν2 --> νe) = |<νe| U(θmR) S(x0 -> xf) U+(θmR) U(θ) |ν2> |2

θmR - mixing angle at the surface of the Earth

If adiabaticity is conserved the regeneration depends on 
the potential  V(R) at the surface and total adiabatic phase

ε (R) = 

Non-adiabatic conversion appears  as the interference term 
and therefore - linearly

1) estimation in a given layer 
2) taking into account borders of the shells

Calculate c(x0 -> xf)
in two steps



c(x0 -> xf) =  -i γ (x) exp [ iΦ(x -> xf)] 
xf

x0

lm
2πhE sin 2θ

lm =  4π/ ∆m

∆freg/freg ~   

hE ~ RE

~ 0.01 - 0.02

- typical scale of the density change 
is of the order of radius of the Earth

We neglect these corrections



Σj= 1 ...n-1

dθm ∆m2 sin 2θ dV(x) 
dx 4E   ∆m

2 dx

freg =                  sinΦ0/2 Σj = 0 …n-1 ∆Vj sin Φj/2 

Consider the trajectory which crosses n shells  (2n-1 layers)
Neglect the adiabaticity violation inside  shells --> 
contribution to c(x0 -> xf)  comes from the borders between layers

=  Jumps of density (potential) 
between layers lead to δ - functions:

∆Vj [ δ(x + Lj/2) - δ(x - Lj/2) ] dθm E sin 2θ
dx ∆m2=

2E sin22θ
∆m2

Φ0 - adiabatic phase along the whole trajectory 
∆Vj - jump of the potential between j-th and j+1 shells
Φj phase acquired within borders of with jumps ∆Vj and -∆Vj

Inserting
in formula 
for c(x):



φj = φj = 

freg =                  sinΦ0/2 Σj = 0 …n-1 ∆Vj sinΦj/2

φj = 0.5(Φ0 - Φj) 

2E sin22θ
∆m2

freg =                   

Σj = 0 …n-1 ∆Vj[sin2Φ0/2 cosφj - 0.5 sinΦ0 sinφj]

Defining

2E sin22θ
∆m2 x

j
j+1

∆Vj

Φ0 

Φj

φj
If φj is large - averaging effect. 
This happens for remote structures, e.g. core

Effect of shells at small depth (~ 10 km ) is important.
For small cos θZ - interference of contributions  from 

different shells - oscillatory behaviour of  freg
For large cos θZ - the distance is small and they can be 
accounted as one layer.



Regeneration factor as function of the zenith angle
E = 10 MeV,  ∆m2 = 6 10-5 eV2,   tan2θ = 0.4



Regeneration factor averaged over the energy intervals 
E = (9.5 - 10.5) MeV (a), and E = (8 - 10) MeV (b).

No enhancement for  core crossing 
trajectories in spite of larger densities
No enhancement for  core crossing 
trajectories in spite of larger densities
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ε (x) =                   <<  1  

V(x)  <<   ∆ m2/ 2E V(x)  <<   ∆ m2/ 2E 

Potential   <<   kinetic energy

For LMA oscillation parameters
applications to

2 E V(x)
∆ m2Small parameter:

perturbation theory in ε (x)ε (x) ~  (1 -3) 10-2



cos θ’ sin θ’

- sin θ’ cos θ’

1        0  

0    ∆m(x) 

theory in terms of 
mass  eigenstates
νmass = (ν1, ν2 )T

U’ =

H(x) =  U’(x)                      U’(x) +

θ’ = θ’ (V) - mixing 
angle of mass 
states in matter 

∆m(x) =             ( cos 2θ  − ε (x)) 2 +   sin2 2θ

εε
Weak matter effect:
mixing in matter ~ mixing in vacuum,
θm ~ θ

ε (x) sin 2θ   
sin 2θ’ =                                                 = ε (x) sin 2θm

( cos 2θ  − ε (x)) 2 +   sin2 2θ

id νmass /dx =  H(x) νmassid νmass /dx =  H(x) νmass

νm  = (ν1m, ν2m )T 

eigenstates in matter 

νmass = U’ νmνmass = U’ νmMass states
mix in matter:

small

∆ m2

2E 

Evolution equation:



cos θj’ sin θj’

- sin θj’ cos θj’

Φm
j =  ∆ x  ∆m(Vj) 

S(x0 -> xf) = (Un’ Dn Un’ +)  ...   (Uj’ Dj Uj’ +) ...  (U1’ D1 U1’ +) S(x0 -> xf) = (Un’ Dn Un’ +)  ...   (Uj’ Dj Uj’ +) ...  (U1’ D1 U1’ +) 

1        0  

0       e

S-matrix in the basis of mass 
eigenstates νmass = (ν1, ν2 )T

Uj’ =

Dj =
x

V

Following procedure of the numerical 
computations . . .

j n

Vj

Dj

Uj’

In j-th layer:

Mixing matrix of mass states:

Phase:

Evolution matrix of 
the eigenstates in matter:

i Φm
j

θj’ = θ’ (Vj) 

x0 xf



Σj Φm
j =   Σj ∆x ∆m(Vj) ->     dx ∆m(x) 

S(x0 -> xf) =  Dn ... Dj ... D1   +   Σj Dn ... Dj+1 Gj Dj-1 ... D1 +   O(Gj Gk) + ...S(x0 -> xf) =  Dn ... Dj ... D1   +   Σj Dn ... Dj+1 Gj Dj-1 ... D1 +   O(Gj Gk) + ...

0    1
1    0

Dj = O(1)

Gj =  0.5 (e       - 1) sin2θj’ + O (ε 2) 

(Uj’ Dj Uj’ +)  = Dj + Gj(Uj’ Dj Uj’ +)  = Dj + Gj
Each block can 
be reduced to  

i Φm
j

~  ∆m(Vj) ∆ x 

expansion in power of  GjGj = O (ε )  

Limit  n -> infty,  ∆ x -> 0

Σj ∆ x ->   dx
Φm(x0  -> xf)  =     dx ∆m(x)     

xf

x0



+ 0.5 i sin2θ dx V(x)  
xf

x0

0                       e 

e                        0iΦm(x -> xf) 

iΦm(x0 -> xf) 

iΦm(x0 -> x) 

S(x0 -> xf) =  
1        0  

0       e

+ O(V2)

Aa->b (x0 -> xf)  = < νb|S(x0 -> xf)|νa >Aa->b (x0 -> xf)  = < νb|S(x0 -> xf)|νa >

S-matrix in the basis of mass eigenstates νmass = (ν1, ν2 )T

The amplitude of the oscillation 
transition νa ->  νb



freg = 0.5 sin22θ dx V(x) sin Φm(x -> xf) 
xf

x0

P2e = sin2θ + fregP2e = sin2θ + freg
Mass-to-flavor
transition: 

ν2 --> νeν2 --> νe

xf

x0

xf

x

x

V(x)
Φm(x -> xf) 

x0 xf
Integration
limits:

The phase is integrated from a given point to the final point

∆m2

2E 
2EV(y)  2
∆m2freg =  0.5 sin22θ dx V(x) sin              dy cos 2θ - - sin22θ  

Regeneration 
factor



freg = 0.5 sin22θ dx V(x)  F(xf - x) sin Φm(x -> xf) 
xf

x0

For mass-to-flavor transition  V(x) is integrated with sin Φm(d) 
d =  xf - x  the distance from structure to the detector 

larger dlarger d larger Φm(d)larger Φm(d)
stronger 
averaging 
effects 

stronger 
averaging 
effects 

weaker sensitivity
to structure 
of density profile

weaker sensitivity
to structure 
of density profile

Integration with the energy 
resolution function  R(E, E’): freg =     dE’ R(E, E’) freg(E’) 

The effect of 
averaging:

For box-like 
R(E, E’)  with 
width  ∆E:

F(d) =              sin lν E 
π d ∆E 

π d ∆E 
lν E 

averaging factor



F

d, km

The width of the first peak

d < lν E/∆Ed < lν E/∆E

lν is the oscillation length

The sensitivity to remote 
structures is suppressed: 

Effect of the core  of 
the Earth is suppressed

Small structures at the 
surface can produce 
stronger effect

The better the energy 
resolution, the deeper 
penetration



Non-adiabatic corrections for propagation in the Sun are negligible 

For LMA   solution one can use the adiabatic perturbation theory
to describe the conversion both in the Sun and in the matter of the Earth 

Precise analytic analytic expression for the probability averaged over 
the production region in the Sun have been obtained

Precise (1 -2 %) analytic formula for the Earth matter  effects
has been obtained which allows us to explain 
detailed features of regeneration effect

Precise description of the  oscillation effects in the 
low density medium is given using the ``epsilon- perturbation’’ theory

The obtained formulas substantially simplify numerical computations
allow to study the sensitivity of the oscillation effects to structure 
of the density profile



Precision of approximation


