

Dept. of Astronomy, School of Science Univ. of Tokyo

Contents

- Stellar evolution & supernovae

- Observational properties of hypernovae
 Spectra and light curves (Optical)
- Evidence of asphericity and **black Hole** formation in hypernova explosions
- Jet-induced explosion model
 - Hydrodynamics of jet propagation
 - Growth of a central black hole
 - Nucleosynthesis

Introduction

- Abundances in metal-poor stars and early Galactic chemical evolution
 - Contribution of hypernovae

1) Asphericity in Core-collapse SNe (in general)

SN1987A: Asymmetrical, but not spherical, ejecta

Optical Polarization in core-collapse SNe > 0.5 % (in SNe Ia < 0.2 - 0.3%)

HST Image of SN1987A Wang et al. 2002

SNe 1993J, 1996cb, Wang et al. 1999

Previous Works								
	Energy Input	Mass cut	Yields					
Many	Prompt Spherical	By hand	Done	8-300M F==1-100				
Nagataki 1998&2000	Prompt Aspherical	Byhand (No Accretion)	Done	SN1987A 20M, E ₅₁ =1				
Maeda et al. 2002	Prompt Aspherical	By hand (No Accretion)	Done	SN1998bw 40M, E ₅₁ =1-30				
Khoklov et al. 1999	Jet induced (By hand)	Hydro (By Accretion)	No	15M, E ₅₁ =1				
This Work	Jet induced (accretion)	Hydro (By Accretion)	Done	20M,40M E ₅₁ =1-30				
			-					

Jet-Driven Explosion Model

- High velocity material (Fe)
- Low velocity & high density material (O)

 Contrary to conventional spherical models.
- forms a black hole, but explodes with large E₅₁ (>10).
 - Black hole formation does not always leads to a failed supernova.

These conditions can be satisfied.

➡ Nucleosynthesis features?

Abundances in Extremely Metal-Poor Stars as Relics of SN Explosions in the Early Galactic Evolution

Only one explosion likely produced metal- poor stars with [Fe/H]= -4 ~ -2.5 [X/Fe]=log(X/Fe)-log(X/Fe)_☉

(Ryan et al. 1996, Shigeyama & Tsujimoto 1998, Nakamura, Umeda, Nomoto, Thielemann, Burrows 1999)

The abundance of these stars are determined by the nucleosynthesis in individual Core-Collapse SNe.

The SNe should be massive because of their short lifetime.

2) Light Curves of Hypernovae Radioactivities in SN ejecta

Decay	τ	<i>E</i> e⁺ (keV)	%	<i>E</i> γ (keV)	%
⁵⁶ Ni > ⁵⁶ Co	8.8			158	99
	days			750	50
				812	87
⁵⁶ Co > ⁵⁶ Fe	111.3	660	19	847	100
	days			1238	68
				2598	17
⁵⁷ Co > ⁵⁷ Fe	391.0			14	89
	Days			122	89
				136	11
⁴⁴ Ti > ⁴⁴ Ca	69.2	597	94	68	100
	years			78	100
				1156	100

