~ICRR Seminar 2002年7月23日~ 電波銀河のジェット終端ローブにおける Energeticsの逆コンプトンX線による診断 東京大学理学系研究科博士課程卒業 宇宙開発事業団 MAXI開発チーム 宇宙開発特別研究員 磯部 直樹 牧島一夫(東大理),田代信(埼大理), 金田英宏,伊予本直子(宇宙研), 東大、埼大の大学院生

<u>X線観測か</u>	<u>らわかる情報</u>
SR電子による逆コンプトン	·(IC)散乱 📥 X線、γ線
IC散乱の種となるソフトな 典型的な打 エネルギー	光子 振動数 v _{soft} 一密度 u _{soft} とすれば
IC X線の観測量と物理量	SR電波の観測量と物理量
振動数 ν _{IC} ∝ <mark>γ</mark> ² ν _{soft}	振動数 γ _{SR} ∝γ <mark>e</mark> ² <mark>B</mark>
強度 S _{IC} ∝ u _e u _{soft}	
指数 α _{IC} =2 <mark>p</mark> +1 _	上指数 $\alpha_{SR} = 2p + 1$
u _{soft} がわかれば、ue	とumが独立に計算できる
{≻ローブ:宇宙マイクロ波	背景放射 1 keV ⇔ γ _e = 1000
$u_{\rm CMB} = 4.1 \ge 10^{-13}$	$(1+z)^4 erg cm^{-3}$
【≻ホットスポット(Blazar):	SR光子(いわゆる SSC)

<u> これまでのX線観測で何かわかった</u>

ローブからのIC X線は ●広がった表面輝度の小さい放射 ●ハードなPower Law スペクトル ●明るい中心核が混入する

「あすか」の登場で、 初めて検出が 可能になった

<u>Centaurus B</u>

<u>何故「あすか」はローブからIC X線を検出できたか?</u>

ローブからのIC X線は
●広がった放射
●表面輝度が小さい
●硬X線までのびる
Power Law スペクトル
●明るい中心核が混入する
>エ

◇広いエネルギー帯域 ○0.7 – 10keV
 ◇大きな有効面積
 ◇低バックグラウンド ◎
 ◇広い視野
 ◇直径50分角
 ◇空間分解能
 △3 分角
 ◇エネルギー分解能
 ○8% (5.9keV)
 GIS 検出器

10 keVまでの撮像を世界で始めて可能に

<u>新世紀のX線観測衛星</u>

XMM-Newton衛星

1999年7月23日打ち上げ 優れた<mark>角分解能</mark> やや有効面積小 2天体の観測提案が採択

1999年12月10日打ち上げ 巨大な<mark>有効面積</mark> BGDが高く変動 4天体の観測提案が採択

<u>CCDカメラ ACIS</u>

<u>X線望遠鏡 HRMA</u>

 >エネルギー帯域 ○ 0.3 - 7 keV
 >有効面積 △「あすか」の数分の1
 >バックグラウンド △「あすか」より一桁高い
 >視野 ○ 8 x 8 arcmin² (1CCD)
 >空間分解能 ○ ~ 0.5 arcsec
 >エネルギー分解能 ○ ~ 150 eV
 小さな電波銀河のローブや ホットスポットから ICX線が検出できる

<u>「あすか」による結果~4C 73.08~</u>

東ローブのスペクトル

<u>Chandraによる観測結果 ~3C 452~</u>

<u>Chandraによる観測結果~3C 452~</u>

他波長スペクトル

電波 $S_{SR} \propto u_e u_m V$ X線 $S_{IC} \propto u_e u_{CMB} V$

ue & um

<u>ローブでの全エネルギー</u>

<u>um V~一定は何を意味するか?</u>

Jet は中心核の活動に比例した磁束BSを $BS \sim BV^{2/3}$ ローブに供給していると仮定すると・・・ $\propto L_X T_B$

 $V_{\rm X}^2 V^{-1/3} T_{\rm B}^2$ **u**_m $D^- V$ Lxに強く依存するいず? へいない料子駆動? ジェットは磁場を有効に供 $- u_e V \propto L_X$ $1/6 \propto 10^{-1} V - 5/6$ $T_{\rm B} \propto L_{\rm X}$ あるいは・・・ という時間スケールで磁場が消滅? たとえば ローブでReconnectionが盛んに起こっている??

<u>Chandra</u>によるホットスポットの観測結果

<u>Jetに関連するEnergetics</u>

●「あすか」、Chandraを駆使して、ICX線を検出することで、 電波銀河のローブにおけるEnergeticsを系統的に調査。 $B = 0.1 - 3 (10) \mu G$ $u_{\rm e}/u_{\rm m} \sim 10$: 粒子優勢 ●ローブ中の電子の全エネルギーは中心核のX線光度に 比例しているが、磁場の全エネルギーはほぼ一定である ことを発見した。ジェットのエネルギー源が質量降着である と考えれば、電子エネルギーの振る舞いは自然である。

 $u_e V \propto L_X$, $u_e V \sim -\Xi$

● IC X線とSR電波の表面輝度分布から、ローブ中の電子 は比較的一様であるのに対して、磁場は周囲に向かって 強まる傾向にあることが明らかになった <u>今後の課題</u>

 ^{II}。> 10 ^{II} ^{II} {どうやって言子を閉じ込めるのか?
 ジェットはユ子駆動なのか?
 ? < 10³ の電子のスペクトルはどうなっているか? より低エネルギーのIC X線、IC可視光
 粒子と磁場の 磁場のFilling 因子 *f* 詳しい空間分布はどうなっているか。
 正電荷をもつ粒子は何か 陽子 or 陽電子

Chandra, Newtonで決着をつけたい

Chandra: 3C427.1(観測済), 3C 438 (Cycle4で採択) Newton: Centaurus B(観測済), Fornax A, ほか2天体 ほとんどが未観測...1天体をAO 2で提案中 現在、Chandra, Newton の公開データを探索中