

BELLE

KEK Bファクトリーの物理 ー 現状と将来 ー

羽澄 昌史 (KEK) October 21, 2003

@ICRR

Outline

BのCPの破れ「虎の巻」 実験装置と基礎的な測定 ユニタリティ三角形の角度 b→sペンギンと未知のCPの破れ

Super B factory

BのCPの破れ「虎の巻」

October 21, 2003

CP非保存の研究の歴史

1960

1964 Discovery of CP violation in K meson decays (Fitch, Cronin et al.)1967 Role of CP violation in the creation of the universe (Sakharov)

- 1973 Kobayashi-Maskawa's 6 quark model and CP violation
- 1974 Discovery of charm quark (Ting, Richter et al.)
- 1979 Discovery of bottom quark (Lederman et al.)
- 1981 Large CP violation in neutral B meson system (Bigi, Carter, Sanda)

1980

1987 Discovery of large $B^0\overline{B}^0$ mixing (ARGUS)

2000

^Br 21, 2003

1995 Discovery of top quark (CDF, D0)

1999 Discovery of direct CP violation in K decays (KTeV, NA48)2001 Discovery of large CP violation in B decays (Belle, BaBar)

quark physics evolution just along the KM prediction !

CKM matrix and Unitarity Triangle (UT)

What's *CP* violation ? the first example

October 21, 2003

What's *CP* violation ? It is a partial rate asymmetry !

October 21, 2003

The rules of the game (very important to develop your own idea !)

- I. Find a decay mode which has two decay paths with different weak phases
 - standard model : one of them has Vub or Vtd
 - new physics : new CP-violating phase
- II. Two paths should have "static" phase difference.
 - strong phase difference
 - mixing of neutral particles
- III. Two amplitudes should have a similar size for sizable interference.

Then, you can observe CP violation !

$\sin 2\phi_1$ from $B \rightarrow f_{CP} + B \leftrightarrow \overline{B} \rightarrow f_{CP}$ interf.

October 21, 2003

Time-dependent CP violation

October 21, 2003

UT determination at Belle in 2003

October 21, 2003

実験装置と基礎的な測定

October 21, 2003

Two B factories in operation since 1999 Bを使った研究は始まったばかり

KEKB collider for Belle

PEPII collider for BaBar

October 21, 2003

The KEKB Collider

October 21, 2003

BELLE

BELLE

Peak luminosity history (1999-2003)

Integrated luminosity: 1999 - 2003

158fb⁻¹ logged by Belle (July 1, 2003; on + off resonance)

Most of results shown today based on on-resonance data taken by July 1, 2003 140fb⁻¹ (152 million B pairs)

Belle Collaboration

Aomori U. **BINP** Chiba U. Chuo U. **U. of Cincinnati** Frankfurt U. Gyeongsang Nat'l U. U. of Hawaii Hiroshima Tech. **IHEP**, Beijing ITEP Kanagawa U. KEK Korea U. Krakow Inst. of Nucl. Phys. Kyoto U. **Kyungpook National U. U. of Lausanne** Jozef Stefan Inst.

U. of Maribor **U. of Melbourne** Nagoya U. Nara Women's U. National Central U. Nat'l Kaoshiung Normal U. Nat'l Lien-Ho Inst. of Tech. Nat'l Taiwan U. Nihon Dental College Niigata U. Osaka U. **Osaka City U.** Panjab U. Peking U. **Princeton U.** Riken Saga U. USTC

Seoul National U. Sungkyunkwan U. **U. of Sydney** Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Metropolitan U. Tokyo U. of A and T. **Toyama Nat'l College** U. of Tsukuba Utkal U. **IHEP**, Vienna VPI Yokkaichi U. Yonsei U.

~300 collaborators from >10 countries

Five Physics Groups at Belle

3 groups for B physics

Indirect CPV (time-dependent analyses)

Direct CPVCKMRare Decays(Vub, Vcb)

76 submitted/accepted papers as of now to PRL (42), PRD (19), PLB (14)

"First author group" (FAG) introduced at the 19th paper and ~60% of papers have FAG since then.

October 21, 2003

Branching Fractions of

Neutral B (taken from PDG96)

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

BELLE

Observation of rare *B* decays (1)

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

26

Observation of rare *B* decays (2)

Observation of rare *B* decays (3)

October 21, 2003

Direct CP Violation

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

29

ユニタリ三角形

October 21, 2003

Time-dependent *CP* violation Analysis Procedure

- CP eigenstate reconstruction
- Vertex reconstruction (Δz)
- Flavor tagging
- Unbinned maximum likelihood fit

Kinematic variables for the Y(4S)

Belle 2003 : CP eigenstates $(b \rightarrow c\bar{cs})$

hep-ex/0308036: full paper in preparation

BELLE

Belle 2003: $B^0 \rightarrow J/\psi K_L$ signal

Control samples

for resolution function and wrong tag fractions

October 21, 2003
Belle Tagging Performance with control samples

Proper-time difference (Δt)

Analysis Procedure Summary

① CP eigenstates with high purity.

- Purity ~ 90% except for $J/\psi K_L$ (~60% for $J/\psi K_L$)
- 2 Efficient flavor tagging.

• Effective efficiency = 27.0%

3 Efficient vertexing with good resolution

④ B lifetime and mixing measured precisely (high stat. control sample)

→ Ready for unbinned maximum likelihood fit

October 21, 2003

Time-dependent *CP* violation in $B^0 \rightarrow J/\psi Ks$ etc.

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

40

BELLE

$sin2\phi_1$ history

October 21, 2003

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

43

World average

October 21, 2003

If D^0 and $\overline{D^0}$ decay into the same final states $B^+ \to \overline{D^0}K$ and $B^+ \to D^0K$ interfere. Mixed state is produced: $|\tilde{D^0}\rangle = |\overline{D^0}\rangle + ae^{i\theta}|D^0\rangle$ $a = \frac{|V_{ub}V_{cs}^*|}{|V_{cb}V_{us}^*|} \cdot \frac{|a_2|}{|a_1|} = 0.09/0.22 \cdot 0.35 \simeq \frac{1}{8}$ $\theta = \delta + \phi_3$

Suggested by A.Giri, Yu.Grossman, A.Soffer, J.Zupan: hep-ph/0303187

ϕ_3 with $B^{\pm} \rightarrow D(\rightarrow Ks \pi^+ \pi^-)K^{\pm}$

Use 3-body final state, identical for D^0 and \overline{D}^0 : $K_s \pi^+ \pi^-$. 3-body decay is characterized by 2 variables: $m_{K_s \pi^+}^2$ and $m_{K_s \pi^-}^2$. Dalitz plot density

October 21, 2003

ϕ_2 , ϕ_3 and Unitarity Triangle

October 21, 2003

BELLE

• \$\op\$_2: 初めての測定(これからだ!)

• \$\ointy\$_3: 初めての測定(これからだ!)

October 21, 2003

October 21, 2003

Standard Model (SM) prediction

- No KM phase in both decays
 - CP violation only from the phase in the mixing

どちらも
$$Asym = \sin(2\phi_1) \cdot \sin(\Delta m \Delta t)$$

Vubによる「汚染」はλ²の微少量→O(1)%

$b \rightarrow s\bar{s}s$ and New Physics (NP)

• $b \rightarrow s$ penguin : sensitive to new CP-violating phase

$b \rightarrow s\bar{s}s$ candidates

October 21, 2003

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

54

BaBar 2003: CPV in $B \rightarrow \phi K_S$

BaBar 2003: $\sin 2\phi_{1eff}(\phi K_s) = +0.45 \pm 0.43 \pm 0.07$

BaBar 2003: $B \rightarrow \phi K_S$ Systematic Issues

81 fb⁻¹: $\sin 2\phi_{1\rm eff}(\phi K_S) = -0.18 \pm 0.51 \pm 0.09$

110 fb⁻¹: $\sin 2\phi_{1\rm eff}(\phi K_s) = +0.45 \pm 0.43 \pm 0.07$

Data size increased and was <u>reprocessed</u>. Extensive checks with data and Toy MC. The large change is attributed to a 1 σ statistical fluctuation.

October 21, 2003

$b \rightarrow s$ "anomaly"

Consequences in B physics

Motivated by large θ23 neutrino mixing: In GUT context, Atmospheric Neutrinos Can Make Beauty Strange !

Addt'l CP violation in penguin $b \Rightarrow s (B_d \Rightarrow \phi K_s)$

Probes if quarks and leptons have common origin of flavor

Super B Factory

October 21, 2003

BELLE

Super B とは?

現在運転中で世界最高の ルミノシティ(1.05×10³⁴ Peak luminosity (cm⁻²s⁻¹) cm⁻²s⁻¹)を誇るKEKB 10 34 Peak Luminosity trends in last 30 years e+e-コライダーの性能を、 さらに 10 33 50倍(5×10³⁵ cm⁻²s⁻¹) にする計画。 10³² ISR - 年間100億個のB中間子 **DORIS II** 10³¹ 既存の設備、人員を最大 限利用する(KEKB/Belleの **TEVÁTRON** TRISTAN DORIS 10³⁰ Major Upgrade). 1975 1980 1985 1990 1995 2000

Year

2005

KEK-B

PEP II

CESR

LEP2

IERA

BELLE

 $B^0 \rightarrow (c\bar{c})Ks \text{ vs. } \phi Ks$

October 21, 2003

5th Workshop on Higher Luminosity B Factory

Sep.24-26,2003 Izu,Japan

http://belle.kek.jp/superb/workshop/2003/HL05/

October 21, 2003

Motivation for $L = 5 \times 10^{35}$

- New Physicsの「発見」から「同定」へ
 - by restricting couplings and phase of new particles with mass \sim 1TeV, which can be found at the energy frontier
 - 理論的・実験的にクリーンな物理量の標準模型からのずれのパ ターン (ユニタリティ三角形は、ゲームの一部)

グローバルな解析の一例

<u>SUSY breaking mechanismの同定</u>

	3	$\Delta \Pi(DS)$	Β->ΦΚS	B->Ms γ	b->sγ
unitarity				time-dep. CP	direct CP
-	_	-	-	-	+
_	+	+	_	+	_
_	_	+	+	++	+
+	+	+	+	++	++
			00	LLL / 12 - : sma	all deviation
3↔1世代			3⇔2	+: siza	able
	- - - + →1世	+ + + + →1世代	 - + + - + + + + + →1世代	- - - - + + - - + + + + + + + >1世代 3<>2	- - - - - - + + - + - - + + ++ + + + ++ ++ >1世代 3 2 + +: siza

$B^0 \rightarrow \phi Ks, \eta' Ks$: 実験精度とdiscovery potential

久野さんの裏切り

(by 尚田氏)

J. Hisano and Y. Shimizu (hep-ph/0308255) Strong correlation between Hg¹⁹⁹ EDM and $S(\phi Ks)$

*S(øKs)*の大きなずれが 見つかれば、より大きな驚き。 実験屋にとっては SUSYの確認より面白い!

 d^C_{\circ} .

October 21, 2003

Time-dependent CP violation in $B^0 \rightarrow K^{*0} \gamma$

Direct CP violation in $b \rightarrow s\gamma$

October 21, 2003

Super Bにおける3 ↔ 2世代の物理

- Time-dependent CP violation (S)
 - $B^0 \rightarrow \phi Ks$
 - $B^0 \rightarrow \eta' Ks$
 - $\quad \mathbf{B}^0 \to K^{*0} \, \gamma$
- Direct CP violation (\mathcal{A})
 - b → s γ (inclusive)
- Forbidden decays
 - $\tau \rightarrow \mu \gamma$
 - その他にも面白い測定あり

Beyond the Standard Modelの探索を極限まで実行

<u>ハドロン不定性</u>~λ²~O(1)% 系統誤差

October 21, 2003

October 21, 2003
Search for new b \rightarrow s phase in $B \rightarrow$ (M. Hazumi hep-ph/0303089) b **FCNC** Resonance S

- Standard Model (SM) \rightarrow direct CPV ~ 0
- with New Physics (NP) \rightarrow direct CPV can be large
 - CP asymmetry of ~0.4 is allowed.
 - Even larger if we use Belle's new result on $Br(\eta_c \rightarrow \phi \phi)$

• 3-body decays also observed with a reasonable branching fractions

5σ discovery region (with $\phi\phi K^{\pm}$ only)

obtained by unbinned maximum likelihood fits to MC pseudo-experiments branching fractions based on Belle's observation (hep-ex/0305068)

 $\phi\phi K^{\pm}$ and ϕKs

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

BELLE

BELLE

Of course not a complete list...

n hur-instances		Security in a second of the second	
Observable	$3ab^{-1}$	$30 \mathrm{ab}^{-1}$	comment
$\mathcal{S}_{\phi K_S}$	$\pm 0.096(\text{stat})$	$\pm 0.030(\mathrm{stat})$	$\mathcal{S}_{\phi K_S} - \mathcal{S}_{J/\psi K_S}$ in SM ?
$\mathcal{S}_{\eta'K_S}$	$\pm 0.054(\text{stat})$	$\pm 0.017(\text{stat})$	$\mathcal{S}_{\eta'K_S} - \mathcal{S}_{J/\psi K_S}$ in SM ?
$\mathcal{S}_{\pi^0K_S}$	NA	NA	Do it !
$\mathcal{S}_{K^{*0}(o K_S\pi^0)\gamma}$	NA	NA	$\sim 1000 {\rm ev.}$ (before VTX) at $3 {\rm ab^{-1}}$
$\mathcal{S}_{J/\psi K_S}$	$\pm 0.017(\text{stat})$	$\pm 0.005(\text{stat})$	error with $J/\psi K_S$ alone
$\phi_2(\pi^+\pi^-)$	$\pm 5.1^{\circ}(\text{stat})$	$\pm 1.6^{\circ}(\text{stat})$	$\pm 5 - 7\%$ (EWP) for $ A^{00} $
$\phi_2~(ho\pi)$	$\pm 3.5^{\circ}(\mathrm{stat})$	$\pm 1.2^{\circ}(\text{stat})$	systematic error ?
$\phi_3 \ (\text{Dalitz})$	$\pm 5 - 7^{\circ}(\text{stat})$		
$\phi_3 ~(ADS)$		$\pm 9^{\circ}(\text{stat})$	
$ V_{ub} $ (inclusive)	$\pm 6.0\%(ext{total})$		$\pm 2.5(\text{stat}) \pm 3.1(\text{sys}) \pm 4.5(\text{th})\%$
$A_{CP}(b \to s\gamma)$	$1.1(\text{stat})\pm 0.8(\text{sys})\%$	$0.4(\text{stat})\pm 0.3(\text{sys})\pm 0.3(\text{th})\%$	
$\mathcal{B}(B \to D\tau\nu)$			need more BG study
$\mathcal{B}(B o au u)$		5σ	3 modes combined $(0.1\%$ full. rec)
$\mathcal{B}(B \to K \nu \nu)$		4.9σ	0.1% full. rec
$\mathcal{B}(\tau \to \mu \gamma)$	$< 3 \times 10^{-8}$	$< 1 \times 10^{-8}$	
$\mathcal{B}(au o \mu/e\eta)$	$< 1 \times 10^{-8}$	$< 1 \times 10^{-9}$	

LHCbとの比較

Super Bでのみ可能

(但しLHCbはBs $\rightarrow J/\psi \phi b \phi$)

- Time-dependent CP violation (S)
 - $B^0 \rightarrow \phi Ks$
 - $B^0 \rightarrow \eta' Ks$
 - $\quad \mathbf{B}^0 \to K^{*0} \, \boldsymbol{\gamma}$
- Direct CP violation (\mathcal{A})
 - $b \rightarrow s \gamma$ (inclusive) Super Bでのみ可能
- BE• Forbidden decays
 - $\tau \rightarrow \mu \gamma$ LHCbは $\tau \rightarrow \mu \mu \mu$ 等?
 - Unitarity triangle

 - **\$**2

– Vub

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

Super Bでのみ可能

Super Bでのみ可能

Luminosity Frontier and Energy Frontier

Beam-beam simulation of crab crossing

K. Ohmi et al.

- Target luminosity : 10³⁵ ~ 10³⁶ cm⁻²s⁻¹
- Number of bunches : 5000
- Beam current : I(HER) = (3.5 GeV/8 GeV) x I(LER)
- Weak-strong simulation

Activities for Super KEKB

•Crab crossing may boost the beam-beam parameter up to 0.2!

•Superconducting crab cavities are under development, will be installed in KEKB in 2005.

(Strong-weak simulation)

K. Ohmi

Head-on(crab)

(Strong-strong simulation)

crossing angle 22 mrad

KEK B factory upgrade strategy

October 21, 2003

Masashi Hazumi (KEK) @ ICRR seminar

Detector upgrade for Super KEKB

Vertex Detector

October 21, 2003

Masashi Hazumi (KEK) @ ICRR

A new design: UV-striplet & analogue pipeline

October 21, 2003

- KEK Bファクトリーは設計通りの性能で絶好調。B でCPの破れを発見し、小林益川理論の有効性を 確認。
- ・稀崩壊におけるCPの破れの探求を本格的に開始。
 3↔2世代遷移の徹底調査は高い発見能力を持つことを示した。
- 50倍にルミノシティ増強で新しいフレーバー物理の
 の地平を切り開く。「発見」の後に新しい物理の「同定」が可能。e+e-のきれいな環境が不可欠。

この「索晴らしい可能性」が「どのくらい素晴 らしい」のか見当もつかない 山田 紳