# 銀河面からのX線放射



INTEGRAL Science Data Centre Versoix, Switzerland

> and NASA/GSFC Greenbelt, MD

> > 1

# Contents

X-ray emission from Galactic plane 1980's to ASCA Our Chandra results Origin of the dimmest Galactic Point sources Chandra and follow-up near-infrared results Discovery of discrete and extended sources With ASCA and Chandra Origin of the Galactic diffuse X-ray emission

# まとめ

銀河面からのX線放射(リッジ成分)は拡散成分 点源の重ね合わせでは説明できない ■ 銀河円盤は高エネルギープラズマで満たされている ■ 銀河面上のもっとも暗いX線点源の分類 硬X線源の多くは活動的銀河中心核 ■ 少し激変星の静状態(白色矮星連星)が混じっている 軟X線源の多くは活動的な主系列星 ■ 銀河面上に、非熱的および熱的な、広がったX線源がみ つかっている ■ 電波では見つかっていない超新星残骸の候補 一つの超新星残骸中に熱的成分と非熱的成分が混在している リッジ成分の起源は謎 ガンマ線成分とスペクトルがほぼつながる 熱的成分、非熱的成分の共存 ■ X線による鉄ラインのプラズマ診断は非常に有用 3

# **Acknowledgments**

#### Chandra Galactic plane observation

 Bamba, A., Hamaguchi, K., Kaneda, H., Maeda, Y., Paizis, A., Sato, G., Senda, A., Ueno, M. and Yamauchi, S.

#### ASCA Galactic survey

- Kaneda, H., Kinugasa, K., Kokubun, M., Koyama, K., Maeda, Y., Matsuzaki, K., Mitsuda, K., Murakami, H., Torii, K., Sakano, M. and Sugizaki, M.
- ESO/NTT observation

Tsujimoto, M., Nishihara, E., Beckman,
 V., Dubah, P. and Courvoisier, T.

# Galactic survey with non-imaging instruments

- HEAO1 detection of the Galactic "Ridge" emission (Worrall et al. 1982)
  - Total luminosity ~1.4×10<sup>38</sup> erg s<sup>-1</sup>
  - Energy spectrum "softer" than Cosmic X-ray BGD

EXOSAT Galactic plane scan (Warwick et al. 1985)



Presence of the Galactic "Ridge" and "Bulge" emission

#### Tenma observation (Koyama et al. 1986)

10 °

COUNTS/SEC/KEV

10-1

10.4

COUNTS/SEC/KEV

10-2

+



6.7 keV iron line emission  $\rightarrow$  hot plasma emission Temperature of the plasma kT ~ 6 - 10 keV

#### Ginga Galactic plane scan (Yamauchi and Koyama 1993)

#### 6.7 keV Fe-line mapping



# 6.7 keV line is a good tracer of thin hot plasma



## Hard X-ray plasma emission from the Milky way Galaxy (established in 1980's)

- Truly diffuse plasma?
- Superposition of numerous point sources?
- A big question for a long time...
- Hard X-ray imaging observation is essential
  - Separate hard X-ray point sources from diffuse emission
  - Penetrate the heavy Galactic absorption

## ASCA: First imaging satellite above ~ 2 keV





(Sugizaki et al. 2001)



Sensitivity ~3x10<sup>-13</sup> erg s<sup>-1</sup>cm<sup>-2</sup> (2-10 keV) Spatial resolution ~1 arcmin Not able to resolve Galactic plane emission

Spatial distribution of the Galactic ridge emission

#### Chandra observation AO1 100 ksec + AO2 100 ksec **Deepest X-ray** observation on a "blank" field on the Galactic plane ■ Sensitivity: ~3 x 10<sup>-15</sup> erg s<sup>-1</sup>cm<sup>-2</sup>

- (~100 ksec; 2-10 keV)
- Many point sources and diffuse emission



Total 274 sources (>4 sigma)

Source serach made in 0.5-3 keV, 3-8 keV and 0.5-8 keV

Red: 0.5-3 keV Blue 3-8 keV



183 soft sources (0.5 - 3 keV)

Red: 0.5-3 keV Blue 3-8 keV



79 hard sources (3- 8 keV)

Red: 0.5-3 keV Blue 3-8 keV



- Small overlap of soft and hard sources
  - They are difference species
  - Hard sources → mostly AGN
  - Soft sources 
     → mostly
     nearby stars



## 2-10 keV band log N-log S



Point source contribution *only* ~ 10 % of the total emission in the FOV Galactic ridge emission is truly diffuse Most sources at ~ 10<sup>-15</sup> erg s<sup>-1</sup> cm<sup>-2</sup> are extragalactic

### **Comparison with Galactic Center**



Much more Galactic hard point sources at GC region Presumably white dwarf binaries (quiescent dwarf novae) 15

# **Diffuse** Galactic ridge emission



# まとめ

#### 銀河面からのX線放射(リッジ成分)は拡散成分 点源の重ね合わせでは説明できない 銀河円盤は高エネルギープラズマで満たされている 銀河面上のもっとも暗いX線点源の分類 硬X線源の多くは活動的銀河中心核 少し激変星の静状態(白色矮星連星)が混じっている 軟X線源の多くは活動的な主系列星 銀河面上に、非熱的および熱的な、広がったX線源がみ つかっている 電波では見つかっていない超新星残骸の候補 一つの超新星残骸中に熱的成分と非熱的成分が混在している リッジ成分の起源は謎 ガンマ線成分とスペクトルがほぼつながる 執的成分 非熱的成分の共存

X線による鉄ラインのプラズマ診断は非常に有用

#### 0.5-2 keV band log N-log S



- Steep slope, new population of sources?
- Presumably X-ray active stars

# Near-IR follow-up observation

**ESO/NTT SOFI** near-IR observation 2002/07/29,30 **J**, **H**, **K**<sub>s</sub> photometry Only central part (~75%) of the **Chandra field** covered



## NIR identification of the X-ray sources

| S)                             |                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hardness ratio                 | Soft $\leq -0.60$                                                                                                                                                                                                           | Medium<br>-0.59 to 0.1                                                                                                                                                               | $Hard \ge 0.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| All                            | 137                                                                                                                                                                                                                         | 68                                                                                                                                                                                   | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Extended                       | 1                                                                                                                                                                                                                           | 3                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Point Source                   | 136                                                                                                                                                                                                                         | 65                                                                                                                                                                                   | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Time variation <sup>a</sup>    | 4                                                                                                                                                                                                                           | 10                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | (3 %)                                                                                                                                                                                                                       | (15 %)                                                                                                                                                                               | (4 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2MASS counterpart <sup>a</sup> | 91<br>(70 %)                                                                                                                                                                                                                | 30<br>(46 %)                                                                                                                                                                         | 9<br>(13 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130 (48 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Covered by SOFIa               | 106                                                                                                                                                                                                                         | 48                                                                                                                                                                                   | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Covered by 5011                | (78 %)                                                                                                                                                                                                                      | (74 %)                                                                                                                                                                               | (71 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (75 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SOFI counterpart <sup>b</sup>  | 99<br>(93 %)                                                                                                                                                                                                                | 40<br>(83 %)                                                                                                                                                                         | 16<br>(33 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $155 \ (76 \%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NIR counterpart <sup>c</sup>   | 119<br>(88 %)                                                                                                                                                                                                               | 49<br>(75 %)                                                                                                                                                                         | 19<br>(28 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 187<br>(69 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                | hardness ratio         All         Extended         Point Source         Time variation <sup>a</sup> 2MASS counterpart <sup>a</sup> Covered by SOFI <sup>a</sup> SOFI counterpart <sup>b</sup> NIR counterpart <sup>c</sup> | hardness ratio $\leq -0.60$ All137Extended1Point Source136Time variation*4(3 %)2MASS counterpart*91(70 %)Covered by SOFI*106(78 %)SOFI counterpart*99(93 %)NIR counterpart*119(88 %) | hardness ratio $\leq -0.60$ $-0.59$ to $0.1$ All       137       68         Extended       1       3         Point Source       136       65         Time variation <sup>a</sup> 4       10 $(3 \%)$ $(15 \%)$ 2MASS counterpart <sup>a</sup> 91       30 $(70 \%)$ $(46 \%)$ Covered by SOFI <sup>a</sup> 106       48 $(78 \%)$ $(74 \%)$ SOFI counterpart <sup>b</sup> 99       40 $(93 \%)$ $(83 \%)$ NIR counterpart <sup>c</sup> 119       49 $(88 \%)$ $(75 \%)$ $(75 \%)$ $(75 \%)$ | hardness ratio $\leq -0.60$ $-0.59$ to $0.1$ $\geq 0.11$ All       137       68       69         Extended       1       3       0         Point Source       136       65       69         Time variation <sup>a</sup> 4       10       3         (3 %)       (15 %)       (4 %)         2MASS counterpart <sup>a</sup> 91       30       9         (70 %)       (46 %)       (13 %)         Covered by SOFI <sup>a</sup> 106       48       49         (78 %)       (74 %)       (71 %)         SOFI counterpart <sup>b</sup> 99       40       16         (93 %)       (83 %)       (33 %)       (33 %)         NIR counterpart <sup>c</sup> 119       49       19         (88 %)       (75 %)       (28 %) | hardness ratio $\leq -0.60$ $-0.59$ to $0.1$ $\geq 0.11$ All       137       68       69       274         Extended       1       3       0       4         Point Source       136       65       69       270         Time variation <sup>a</sup> 4       10       3       17 $(3\%)$ $(15\%)$ $(4\%)$ $(6\%)$ 2MASS counterpart <sup>a</sup> 91       30       9       130 $(70\%)$ $(46\%)$ $(13\%)$ $(48\%)$ Covered by SOFI <sup>a</sup> 106       48       49       203 $(78\%)$ $(74\%)$ $(71\%)$ $(75\%)$ SOFI counterpart <sup>b</sup> 99       40       16       155 $(93\%)$ $(83\%)$ $(33\%)$ $(76\%)$ NIR counterpart <sup>c</sup> 119       49       19       187 $(88\%)$ $(75\%)$ $(28\%)$ $(69\%)$ |

93 % of the soft sources identified Only 1/3 of the hard sources identified



- Two populations
  - Soft sources and Hard sources
- Soft sources tend to have near IR counterparts



There are bright hard sources without NIR ID  $\rightarrow$  AGN Only a few dim soft sources are not identified in NIR  $\rightarrow$  dim stars

#### Average source spectra



# **Classification of point X-ray sources**



# まとめ

- 銀河面からのX線放射(リッジ成分)は拡散成分
   点源の重ね合わせでは説明できない
   銀河円盤は高エネルギープラズマで満たされている
- 銀河面上のもっとも暗いX線点源の分類
  - 硬X線源の多くは活動的銀河中心核
    - 少し激変星の静状態(白色矮星連星)が混じっている
  - 軟X線源の多くは活動的な主系列星
- 銀河面上に、非熱的および熱的な、広がったX線源がみつかっている
  - 電波では見つかっていない超新星残骸の候補
  - 一つの超新星残骸中に熱的成分と非熱的成分が混在している
  - リッジ成分の起源は謎

- ガンマ線成分とスペクトルがほぼつながる
- 熱的成分、非熱的成分の共存
- X線による鉄ラインのプラズマ診断は非常に有用

# Discovery of discrete and extended sources

ASCA and Chandra discovered numerous discrete and extended sources on the Galactic plane

## Non-thermal X-rays from the SNR Shell

Galactic Plane Survey 0.7-7keV





 RXJ1713.7-3946
 No emission lines
 Photon index=2.4-2.5
 Northwest shell of G347.3-0.5
 TeV gamma-ray source (Enomoto et al. 2002)
 Particle acceleration site

## Unidentified Extended Sources: Non-thermal X-Ray SNR Candidates





Photon index=1.6





Photon index=1.8





Photon index=1.3

**Bamba et al. (2002)** 

#### Unidentified Extended Sources: SNR Candidates with Thermal Emission G0.0-1.3 (AXJ1751-29.6) G0.56-0.01 (AXJ1747.0-2828)





Sakano (2000), Sakano et al. (2002), Senda et al. (2002)



(Kaneda et al. 1997)

**Ebisawa et al. (2001, 2002)** 30



# まとめ

- 銀河面からのX線放射(リッジ成分)は拡散成分
  点源の重ね合わせでは説明できない
  銀河円盤は高エネルギープラズマで満たされている
  銀河面上のもっとも暗いX線点源の分類
  硬X線源の多くは活動的銀河中心核
  - 少し激変星の静状態(白色矮星連星)が混じっている
  - 軟X線源の多くは活動的な主系列星
- 銀河面上に、非熱的および熱的な、広がったX線源がみ つかっている
  - 電波では見つかっていない超新星残骸の候補
  - 一つの超新星残骸中に熱的成分と非熱的成分が混在している
- リッジ成分の起源は謎

- ガンマ線成分とスペクトルがほぼつながる
- 熱的成分、非熱的成分の共存
- X線による鉄ラインのプラズマ診断は非常に有用

### Energy spectra of the Galactic Ridge X-ray emission

Emission lines from highly ionized Si, S, and Fe
 Explained with thermal plasma model



Non-thermal (power-law) component above ~10 keV



**Omnipresence of thermal and non-thermal plasma in the Galaxy** 

## Galactic diffuse X-ray and gamma-ray emission Hard X-ray smoothly connects gamma-rays up to ~1 GeV



Gehrels and Tueller (1993)

Valinia et al. (2000)

# Problem of the Galactic Ridge X-ray emission (GRXE)

- Purely thermal model impossible (Warwick et al. 1985; Koyama et al. 1986)
  - p/k=2nT~10<sup>5</sup> K cm<sup>-3</sup>~10 eV cm<sup>-3</sup>
    - Too high pressure/energy density!
  - Thermal velocity exceeds the escape velocity
  - Not able to confine in the Galactic disk
- Thermal + Non-thermal model?
- What is the origin of thermal/non-thermal energy source?

# Models for GRXE

- Non-thermal bremsstrahlung for hard X-ray tail (Yamasaki et al. 1997)
- Interaction of low energy cosmic-ray electrons and ISM (Valinia et al. 2000)
- Magnetic reconnection of interstellar magnetic fields (Tanuma et al. 1999, 2001)
- Charge exchange of cosmic-ray heavy nuclei (Tanaka 2002)
- In-situ acceleration of electrons (Dogiel et al. 2002; Masai et al. 2002)

# Precise iron K-line spectroscopy is crucial

#### Diffuse iron line from Chandra ACIS-I Scutum field



Iron line central energy 6.56 ± 0.01 keV
Significantly less than 6.67 keV (He-like iron)

Contamination of 6.4 keV fluorescence line?
Non-ionization equilibrium?
Presence of 6.97 keV hydrogenic line? (claimed by Tanaka 2002)

Origin of the Galactic ridge emission
 Cosmic-ray Fe ion, charge exchange model (Tanaka 2002)
 6 97 keV bydrogenic

- 6.97 keV hydrogenic line expected
- Observed from GC and ridge by ASCA
- Technically difficult analysis



## Origin of the Galactic ridge emission

#### Valinia et al. (2000) Low Energy Cosmic Ray electron model



# 6.4 keV + 6.67 keV iron line feature explained!



# Origin of the diffuse hard X-ray emission MHD simulation (Tanuma et al. 1999; 2001)



Supernova triggers magnetic reconnection (similar to solar flare)



# Hot, non-ionization equilibrium plasma (6.60 keV line expected)

# Iron line diagnostics of GRXE

- Iron line spectroscopy is crucial to study origin of GRXE
  - Line center energy? Presence of 6.97 keV line?
  - Line width
    - Narrow?
    - Broad due to cosmic ray motion?
- ASTRO-E2 simulation
  - XRS X-ray micro-calorimeter (△E~ 8 eV)
  - XIS CCD camera (∆E ~ 120 eV)
- Diffuse flux is proportional to the detector FOV
  - Small FOV of XRS (2.8×2.8 arcmin<sup>2</sup>)
  - Large FOV of XIS (18 ×18 ×4 arcmin<sup>2</sup>)
  - XRS is ~200 times less sensitive to diffuse iron line emission than XIS!

# Models to fit the Chandra spectrum



Narrow 6.55 keV line Broad 6.55 keV line

6.4 keV + thermalspectrum (6.7 + 7.0)keV)

## Simulation (XRS+4XIS)



X-ray calorimeter unambiguously resolves the iron emission line! But 1 Msec observation with ASTRO-E2 XRS not feasible... Task for future calorimeter mission (NEXT, Constellation-X?)<sub>43</sub>

# Origin of the diffuse emission

- Galactic diffuse emission (Galactic center, bulge and ridge)
  - Thermal and non-thermal components
  - Very high energy density (~10 eV/cm<sup>3</sup>), compare to cosmic rays, interstellar magnetic fields (~1 eV/cm<sup>3</sup>)
- Discrete diffuse sources (SNR like)
  - Sources with thermal spectra
  - Sources with non-thermal spectra
  - Co-existence of thermal and non-thermal components

# How are they related?

# まとめ

- 銀河面からのX線放射(リッジ成分)は拡散成分
   点源の重ね合わせでは説明できない
   銀河円盤は高エネルギープラズマで満たされている
   銀河面上のもっとも暗いX線点源の分類
   硬X線源の多くは活動的銀河中心核

   少し激変星の静状態(白色矮星連星)が混じっている
   軟X線源の多くは活動的な主系列星

   銀河面上に、非熱的および熱的な、広がったX線源がみつかっている
  - 電波では見つかっていない超新星残骸の候補
  - 一つの超新星残骸中に熱的成分と非熱的成分が混在している
- 」リッジ成分の起源は謎
  - ガンマ線成分とスペクトルがほぼつながる
  - 熱的成分、非熱的成分の共存
  - X線による鉄ラインのプラズマ診断は非常に有用

# まとめ

銀河面からのX線放射(リッジ成分)は拡散成分 点源の重ね合わせでは説明できない ■ 銀河円盤は高エネルギープラズマで満たされている ■ 銀河面上のもっとも暗いX線点源の分類 硬X線源の多くは活動的銀河中心核 ■ 少し激変星の静状態(白色矮星連星)が混じっている 軟X線源の多くは活動的な主系列星 ■ 銀河面上に、非熱的および熱的な、広がったX線源がみ つかっている ■ 電波では見つかっていない超新星残骸の候補 一つの超新星残骸中に熱的成分と非熱的成分が混在している リッジ成分の起源は謎 ガンマ線成分とスペクトルがほぼつながる 熱的成分、非熱的成分の共存 X線による鉄ラインのプラズマ診断は非常に有用 46