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We present a method to measure the flux of various cosmic ray compositions by comparing the measured
distribution of shower maxima with that of simulated distributions. The advantages of the method include its
use of the full shower maximum distribution (rather than just the mean), and its calculation of a flux for various
cosmic ray compositions. The method can be expanded to marginalize uncertainties due to choice of spectra,
hadronic models, and atmospheric parameters.

1. Introduction

Due to the impracticality of direct observation of cosmic ray primary particles with energies > 10? eV, cosmic
ray detectors must rely on indirect methods to understand the chemical composition of the ultra-high energy
cosmic ray flux. In an air fluorescence experiment such as the High Resolution Fly’s Eye (HiRes) detector,
which records air shower development as a function of atmospheric slant depth, information about primary
particle composition can be inferred from observations of X,,,., the depth at which the air shower particle
count is a maximum. Showers induced by protons tend to reach the maximum of the shower development at
larger slant depths than showers induced by heavier elements. However, since shower-to-shower fluctuations
are large, a determination of the primary type for individual showers is not possible.

In the past, averaged quantities like the elongation rate — the mean height of shower maximum (X, 4, ) versus
the logarithm of primary particle energy — have been used successfully to understand the composition of the
cosmic ray flux on a statistical basis[1, 2, 3]. Due to the relative insensitivity to small shifts in composition
between selected low-Z or high-Z primaries, these observations have been reported historically as “proton-
like” or “iron-like.” Though we expect ~ 100 g/cm? difference between {X,,,45) of protons and iron, large
shower-to-shower fluctuations (~ 30 g/cm?) cause a significant overlap in their distributions.

Here, we present a method to answer a question not directly addressed by other techniques: in a fluorescence
data sample where one has measured X,,,,, for each event, what is the best estimate for the expected mean
number of protons and iron from that experiment? Once the answer is obtained, the mean number can be
converted to a flux for protons and iron.

This method has several advantages over previous approaches. First, the technique can be trivially expanded
to evaluate the contribution of any number of compositions. Second, it uses more information than averaged
quantities like the elongation rate, utilizing the shape of the X,,,, distribution rather than simply its mean.
And third, the method allows the introduction of systematic uncertainties and prior knowledge (or lack thereof)
concerning the composition spectra, hadronic generators, parameters concerning the extensive air shower, and
atmospheric uncertainties.

In brief, the technique for extracting the cosmic ray composition essentially requires us to find the best nor-
malizations for the “hypothesized” X, distributions for protons and iron. By “best” we mean the sum of
the expected mean events for the hypothesized distributions that best match the expected mean for the X 44
distribution for a data sample D. The chance that the combined hypothesized distributions match the parent



328 B.M. Connolly et al.

distribution for data is proportional to the likelihood, I(D|p, f), which is maximized to obtain the best estimates
of pand f.

We develop the method using simulated stereoscopic data from the HiRes experiment in Utah, whose aspects
and reconstruction are described in [4, 5, 6]. The method is tested with many independent data sets origi-
nating from a simulated parent set with py.,.. proton events generated with an £~ spectrum and fi.,e iron
events generated with an E~ %/ spectrum. Each bin of this parent distribution is be fluctuated according to
Poisson statistics, allowing us to build a set of independent simulated data distributions with which we test the
predictions p and f. A general description of this technique is given in [7].

2. The Likelihood

To calculate p and f, the mean number of protons and iron, we maximize [(D|p, f), the likelihood of the data
sample D given p and f. To this end, Bayes’ theorem allows us to convert the probability of a particular data
sample D given the composition mixture to the probability of the composition mixture given the data:

___P(Dlp, falp, f)
P I1P) = 5 5Dy, alw, ) M

In this expression, P(p, f|D) is the probability of obtaining some mean number of proton (p) and iron (f)
primaries at a HiRes experiment from the sources in D; ¢(p, f) is the prior probability of p and f. As a
technical aside, we split the prior g(p, f) into two pieces

alp, f) = Qp, )d' v, f)- 2)

The variable Q) (p, f) represents prior information that we may have concerning the distributions for protons and
iron. The variable ¢/ (p, f) represents all other prior information. For instance, if the likelihood were evaluated
for various shifts in energy scales, atmospheric parameters, or the inelastic cross-sections or inelasticities, g’
would be the relative probability of those shifts. In the present analysis, we choose

]'7 p7f>0’

0, porf<0 )

df)= {

and effectively maximize P(p, f) by maximizing the likelihood I(D|p, f) = P(D|p, f)q(p, ).

To calculate [(D|p, f), we divide the X4, distributions into N bins. If p; (f;) represents the hypothesized
mean proton (iron) count in the i*? bin, then the number of hypothesized data events in the i¢" bin d; is

di = pi+ fi = epbi + €4 f; “4)

where €, () is the ratio of p (f) to the number of proton (iron) simulated events. Therefore, p; and f, are the
number of hypothesized proton and iron events scaled to the luminosity of their respective simulated samples.
Both p; and f; will be marginalized, i.e. integrated out, to eliminate the dependence on those parameters. In
practice, P(D|ep, €f) is calculated instead of P(D|p, f).

The probability for the observed distribution of data events given p, f, p; and fz is

e d.Diefdi "’Il)ie*ﬁi ~,Fie*fi
P(D\p, f,pi, fi) = ( ZD_, ) <p1P,| ) <fz foX )
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where P; and F; are the number of proton and iron events in the i*? bin of the simulated samples, respectively.

Marginalizing #; and f; and multiplying the probabilities for all the bins, we can define the likelihood I(D|p, f):
I(Dlp,f) = PDlp,fap, f (6)

N bins D; ~P; = FF; .
d ie i o~ Di Fi o—fi
= H/dm/dﬂ( )(p‘;i! )(Fi' ) (7)

2.1 Note About Uncertainties

To artificially separate the systematic and statistical uncertainties, one can, for example, remove any prior
knowledge concerning the uncertainties in our models for protons and iron (i.e. remove Q(p, f,pi, f;) from
I(D|p, f,Di, fi)) and define statistical uncertainty as

- dliemd
stat(Dlpa = /dpz/dfz (8)

Z

Then, by calculating the total uncertainty (o40;) from I(D|p, f) and ostq¢ from lspq:(D|p, f), the systematic
uncertainty (0y5) can be deduced.

3. Eliminating Spectral Dependence in the Likelihood

In practice, the energy spectra for protons and iron are unknown. To include our lack of prior knowledge of the
energy spectrum, a slightly more sophisticated likelihood is used, such that Eq. (1) becomes

Za,,:—2,—3 Zaf:—Z,—3 P(Dlp, f, apaaf)Q(p’ 5 ap’af)
Zp,f,ap,af P(D|p’ f’ al’iaf)q(pa fa al)iaf)

Other priors such those concerning atmospheric parameters can be introduce and marginalized in a similar
manner. Since we have assumed a flat prior, maximizing the probability P(p, f|D) is to maximize the likeli-
hood

P(p, fID) = ©)

l(Dlpa f} Qp, Oéf) = P(D|pa fa Qp, Oéf)q(p, f} Qp, Oéf). (10)
The likelihood is now
I(Dl|p, f) = dp; ctf1 L L . (11)
o= % & T e fa(557) (57) (55

4. Discussion

It should be noted that this method does not take the place of an elongation rate measurement, but rather
answers the specific question: given a set of hypotheses about protons, iron and gamma primaries that includes
their interactions with the atmosphere and how those interactions are observed in the detector, what are their
relative contributions to the data? In contrast, the elongation rate is unaffected by such assumptions; one is free
to interpret what the measured elongation rate might say about the characteristics of air showers or the relative
abundances of certain primaries. The results of applications of this method to simulated HiRes stereo data will
be presented at the conference. We will also show first results from applications of the method to HiRes stereo
data.
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