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For more precise energy determination of UHECR, the fluctuations of the lateral distribution function play a 
significant role. We present a series of AIRES EAS simulations for gamma primaries of 100 EeV energy and 
different primary zenith angles. Due to the fact that electrons and positrons carry the 90% of the UHECR 
energy, we use these components to derive the lateral distribution functions and determine the distance 
which does not depend on the zenith angle of the primary gamma ray. 
 
 
1. Introduction 
 
During the past twenty years one of the clues of Ultra-High Energy Cosmic Rays (UHECR) is the 
observation by several Extensive Air Shower arrays (EAS) of handful cosmic particles with energies greater 
than 5x1019 eV. The extreme low fluxes of such energy particles require large area arrays.  
 
The atmosphere with which cosmic particles interact plays the role of a huge detector within which a large 
number of elementary particles is created and which develops the structure of an EAS. These particles, 
which 90% consist of electrons, positrons and photons, form a disc of particles which is propagated with 
nearly the speed of light forming the base of the EAS front. Upon arrival at the earth surface its radius 
increases with energy, up to several kilometres. The longitudinal and lateral structure of the showers can 
give us valuable information of the energy, origin and chemical composition of the cosmic particle. 
The dynamics of the behaviour of the lateral distribution of particles in EAS is well understood and is used 
to determine primarily the energy of the cosmic particle. 
  
 
2. Lateral Distribution Function 
 
Α ground array of detectors (scintillators or Cerenkov counters) samples the charged secondary shower 
particles as they reach the ground. They determine the energy of the cosmic particle from the particle density 
variation from the shower core to a radial distance of some km. They measure the so called Lateral 
Distribution Function (LDF), which is the particle density distribution as a function of the radial distance 
from the shower core. The separation of the detectors which generally form a large array is proportional to 
the energy of the cosmic particles under investigation. For example, the separation of the Cerenkov detectors 
of P. Auger observatory aiming at measuring cosmic particles above 1019 eV is 1.5 km covering an overall 
area of 3,000 km2 [1]. 
 
The primary energy of a cosmic particle is proportional to the sum of particles in the EAS of which a 
characteristic indicator is the atmospheric depth of shower maximum. In the case that an array is situated at 
that depth, it will measure more or less this sum of particles which equally share the primal energy of the 
cosmic particle. It has been shown that this common energy is about 1.4 GeV [2]. Therefore, one can easily  
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determine the energy of the cosmic particle by multiplying this figure with the total number of shower 
particles at maximum.  
 

However, this energy determination is not always applicable since one must always detect an EAS at its 
maximum. The atmospheric slant depth varies with the zenith angle at which an UHECR particle enters the 
atmosphere and the showers reach the observing levels far after their maximum of the cascade development. 
In addition, the atmospheric depth of shower maximum fluctuates from event to event of equal showers due 
to the stochastic characteristics of the hadronic showers along their axis. For better energy determination, 
one should introduce a method less sensitive to the height of shower maximum.  
Hillas suggested that the fluctuations of the particle densities farther from the core are smaller and the LDF 
at such distances (about one kilometre) can be a good energy indicator [3].  
 

Simulations of EAS showed that the density of shower particles becomes stable at radial distances of about 
one km from the core. This density is proportional to the energy of cosmic particle and does not depend on 
its chemical composition. In the excellent review paper by Yoshida it is mentioned that the radial distance of 
600 m from the core of the EAS has been used to determine the primary energy [4]. The conversion factor 
from the density of the shower at 600 m to the energy depends on the type of detectors and on the altitude of 
the site where the array is located. For example, for a Cerenkov detector the conversion factor is almost 
twice than for a plastic scintillator.  

 
3. AIRES Simulations for Gamma initiated EAS 
 
For cosmic protons and heavy ions the LDF is derived using the AIRES code [5,6,7]. This function 
decreases rapidly with radial distance from the core of the shower and depends on zenith angle. The shape of 
the relation of LDF and radial distance in a log-log scale is a parabolic one in the range 200 m to 2.5 km. By 
applying the same code, we show that this distribution function for a gamma cosmic ray of energy 100 EeV 
gives similar functions as protons. Figure. 1 shows the variation of the electrons and positrons from the core 
to radial distances for two zenith angles. Obviously, the decrease is larger for 60 degrees due to the longer 
slant depth.  
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Figure 1. AIRES simulation of a gamma EAS of energy 100 EeV reaching the ground at a zenith angle of 40, 60 
degrees, respectively. Dashed lines represent a polynomial fit suggested by Billoir et al [6]. 
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An other set of simulations of lateral distributions of EAS due to gamma primaries, shows that even for 
theses showers the radial distance in which the distribution of muons is not affected by the slant depth is 
similar to that of proton showers, 1 km (Figure 2). The lateral distribution of the same simulations but for the 
electron component is shifted towards closer distances to the shower core (Figure 3).    
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Figure 2. AIRES simulation of an inclined gamma EAS of energy 100 EeV. Lateral variation of the muon component. 
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Figure 3. AIRES simulation of an inclined gamma EAS of energy 100 EeV. Lateral variation of the electron component. 
 
 
4. Conclusions 
 
The lateral distribution function is derived in order to estimate the primary energies. Hillas et al. suggested 
that due to the fluctuations of hadrons near the core of the shower the appropriate distance is around 600 m 
[3]. Dai et al. used the same distance by simulations of proton and heavier nuclei showers [8]. For muons, 
these fluctuations are more pronounced than for electrons (Figure 2). Our simulations concern the LDF of 
the electron rather than the muon component for gamma primaries of very high energy (100 EeV). These 
distributions are close to a polynomial fit which is similar to that of muons [6]. In addition, for the same 
primary gammas both the muon and electron LDFs show already the accepted distances from the shower 
core, which are not affected by showers of different zenith angles (Figures 1, 2 and 3).  
Due to the statistical fluctuations of the simulations, we could not conclude in which distances the shower 
fluctuations  are  minimal. We  needed  CPU  times  of  many  days  for each set of simulations, while for the  



                                                            A. Geranios et al.                     

 
158 

presented simulations the CPU time was about three to four days. Nevertheless, these fluctuations decrease 
after the distance of about 500 m (Figure 2). 
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