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We present results of an improved analysis of the experimental data of the EAS Cherenkov array Tunka-25.
A new function to fit the Cherenkov light lateral distribution LDF at core distances from 0 to 350 m has been
developed on the base of CORSIKA simulations and applied to the analysis of Tunka data. Two methods to
estimate the EAS maximum position have been used. The one is based on the pulse FWHM, the other on the
light LDF. We present the primary energy spectrum in the energy range ������ - ������ eV. The use of the depth of
the EAS maximum to determine the mean mass composition is discussed.

Tunka-25: Experiment and Simulations

The Tunka EAS Cherenkov array is located in Tunka Valley, at an altitude of � ��� m a.s.l., and was described
in Ref. [1].

Extensive air showers in an energy range ��� ������� to ��� ������ eV have been simulated with CORSIKA. The total
amount of 600 CORSIKA events has been simulated for primary protons and iron nuclei and for three zenith
angles 0 � , 15 � and 25 � . The LDF consists of two branches: one almost exponential from the core to some
distance  "!$# , the other following a power law from  %!$# up to 350 m:
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The main difference to the expression suggested in [2] is the use of variable power law index for the second
branch. All three partial parameters defining the LDF shape,  = ,  !$# and

W
, are strict functions of a single

steepness parameter V , defined as the ratio of Cherenkov light fluxes at core distances 100 and 200 m: V_*&(' ��2� )`: &a' � ��� ) .
Examples of fitting the simulated LDF with equation 1 for different parameters V are shown in fig.1. The
parameter V and the light flux at a fixed core distance 175 m,

& ���`� , have been determined for every simulated
event.

The essential correlations of parameter pairs b = and
& �K�3� , b = and c5d[e$f , c5d�e-f and V , and the standard

deviations of their distributions, separately for 1 and g%/ , have been extracted from this CORSIKA simulation
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Figure 1. CORSIKA: EAS Cherenkov light LDFs and fit-
ting functions. 1 - h = 5, 2 - h = 4, 3 - h = 3

Figure 2. EXPERIMENT: Differential energy spectrum.

in order to use them in a special code called ”model of experiment”. Two intermediate nuclear groups, cor-
responding to primaries ci/ and j"kml have been added to the ”model” using an interpolation of parameters,
obtained for 1 and g%/ . The real geometry of the array and the response of every detector and it’s fluctuations
are taken into account in the model. The ”model of experiment” permits a fast generation of �� � 4 �� � ar-
tificial events, distributed with a realistic energy spectrum, for different assumptions concerning the primary
mass composition. It allows to analyse the array response, including the analysis of details of the program of
EAS parameter reconstruction, the efficiency of registration of EAS, the threshold of the total array, errors and
possible distortions of the reconstructed energy b = , and the depth of the shower maximum n(d[e$f .
The ”model of experiment”, assuming a complex mass composition (p:He:CNO:Fe=0.25:0.25:0.25:0.25), has
shown that for energies op�a� ������ eV, our procedures of relative calibration of the detectors and the EAS
parameter reconstruction result in accuracies of primary energy determination of q ��� %, of the core position
of q 5 m and of nad[e$f of q 30 g/cm O . For energies below �r� ����K� the errors are larger. The threshold of data
acquisition with 100% (50%) efficiency is s.� ������ eV ( � � ���;��� eV). Some other conclusions of the ”model”
will be discussed later.

Primary Energy Spectrum

The primary energy bt= [TeV] has been obtained from
& �K�`� [ u]v]w�x3w�yH�zL{ R O �L|} R~� ] with the relation:

b[="*G� �2� � & = P Q ��K�3� X
The absolute energy calibration is based on the results obtained with the QUEST experiment [3].

Figure 2 presents the differential energy spectrum, derived from data taken in � ��� hours, spread over about ���



Spectrum by Tunka ... 259

clear, moonless nights, with a trigger rate above ��X s Hz . To construct a spectrum, showers with zenith angles�a� � � � and a core position inside the geometrical area of the array have been selected.

We note that particularly at the lowest and the highest energies, the new fit functions performs significantly
better than that used in [4].

Depth of the EAS Maximum

The lateral and the time distributions of the Cherenkov light provide two independent methods to estimate the
depth of the EAS maximum. The first is the measurement of the LDF steepness V , which is related to the
distance to the shower maximum by the expression c(d[e$f (in [km]): c5d[e$f�* �<��X ����4 �]X �;� s��+� ' V 8 s X Z�� �2) O .
This relation is almost independent of other details of the simulation: energy, sort of nucleus, zenith angle and
model of hadron interaction. The distribution of c(d[e$f for a fixed V has a standard deviation of only 0.3 km.

The depth of the EAS maximum n d[e$f is derived from c d[e$f using the atmosphere parameters consistent with
really observed (the mean temperature during the observations is -20 � C). The ”model of experiment” gives an
error of 30 g/cm O for the experimental depth of the EAS maximum n�d[e$f .
The second method is measuring the Cherenkov pulse full width on half maximum (FWHM). In accordance
with CORSIKA simulations as described above, the FWHM [ns] at distances larger than � ��� m from the EAS
axis is related to the relative position of the EAS maximum: �.n�*�n(=�:�z-w2� � 4�nH���3� [g/cm O ], – where na=
is the total depth of the atmosphere and

�
is the zenith angle of the shower. The relation between FWHM

and �.n depends only on the distance to the EAS axis, and is almost independent on the other details of the
simulation: energy, sort of nucleus and model of hadron interaction. For example, for a distance of � �^� m, one
obtains �.n�* � � �2�>8���2� �.�<�Yw2� � = '��7���N� ) . The underlying theoretical uncertainties for this method are
smaller than for the first one.

Figure 3 presents the mean depth of the EAS maximum, derived with the two methods described above, as a
function of primary energy. The ”model of experiment” shows that there is no influence of the array threshold
on the obtained n d[e$f , starting from an energy ��X�� � ����K� eV. It is seen from fig.3 that the threshold of the
FWHM method is higher than that of the LDF steepness method, but the mean depths, obtained with the two
different methods are in good agreement. Both methods result in large fluctuations of mean points at low
statistics (high energy), as expected for a very asymmetric distribution like that of n����K� .
Experimental na���K� distributions for EAS in the energy range 3 – 10 PeV are shown in fig 4. All the values ofn5���3� are re-normalized to a fixed energy of � � ����K� eV, using an experimental elongation rate of ( Z;�]� � ) g/cm O .
The experimental distribution is compared to distributions simulated with the ”model of experiment”, for dif-
ferent assumptions on primary composition, and re-normalized in the same way as the experimental one. The
agreement with experimental data is better for the complex composition (p:He:CNO:Fe=0.25:0.25:0.25:0.25),
than for pure 1 or g%/ . So the intermediate mass composition is more probable, but it should be noticed that the
difference between simulated and experimental standard deviation is significant only for pure 1 or g%/ . For a
wide range of intermediate compositions, mixtures of mass components lead to standard deviations similar to
those marked as ”complex” in the figure.

The mean value of the simulated distribution depends on hadron interaction model. In fig. 3, n����3� vs. energy
is displayed for two models QGSJET-01 [5] and QGSJET-II [6]. All other models used in CORSIKA yield
lines between these borders [7].

One sees, that a conclusion about the mean mass composition strongly depends on the chosen hadron interac-
tion model. To solve the problem with the model the measurement of energy dependence of n ���K� in much
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Figure 3. Mean depth of EAS maximum vs energy. Figure 4. �%�7�S� distribution.

wider energy range is very essential. This is one of the reasons of our decision to spread our measurement to
lower energy with the new version of Tunka-25 Cherenkov light detectors supplied with spheric mirrors of 1
m diameter. To the other hand the new experiment Tunka-133 [8] with effective area 10 times higher than that
of Tunka-25 is under construction in Tunka valley.
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