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Absolute Energy Scale Calibration of Multi-TeV Cosmic Rays
Using the Moon’s Shadow Observed by the Tibet Air Shower Array

K. Kawata for the Tibet AS � Collaboration
M. Amenomori � , S. Ayabe � , D. Chen � S.W. Cui � , Danzengluobu � , L.K. Ding � , X.H. Ding � ,
C.F. Feng

�
, Z.Y. Feng � , X.Y. Gao � , Q.X. Geng � , H.W. Guo � , H.H. He � , M. He

�
, K. Hibino 	 ,

N. Hotta
 , Haibing Hu � , H.B. Hu � , J. Huang � , Q. Huang � , H.Y. Jia � , F. Kajino � ,
K. Kasahara  , Y. Katayose � , C. Kato � , K. Kawata � , Labaciren � , G.M. Le � , J.Y. Li

�
, H. Lu � ,

S.L. Lu � , X.R. Meng � , K. Mizutani � , J. Mu � , K. Munakata � , A. Nagai� , H. Nanjo � ,
M. Nishizawa � , M. Ohnishi � , I. Ohta
 , H. Onuma � , T. Ouchi 	 , S. Ozawa � , J.R. Ren � ,
T. Saito � , M. Sakata � , T. Sasaki 	 , M. Shibata � , A. Shiomi � , T. Shirai 	 , H. Sugimoto � ,
M. Takita � , Y.H. Tan � , N. Tateyama 	 , S. Torii � , H. Tsuchiya � , S. Udo � , H. Wang � , X. Wang � ,
Y.G. Wang

�
, H.R. Wu � , L. Xue

�
, Y. Yamamoto � , C.T. Yan � , X.C. Yang � , S. Yasue � ,

Z.H. Ye � , G.C. Yu � , A.F. Yuan � , T. Yuda 	 , H.M. Zhang � , J.L. Zhang � , N.J. Zhang
�
,

X.Y. Zhang
�
, Y. Zhang � , Yi Zhang � , Zhaxisangzhu � and X.X. Zhou �

(a) Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan
(b) Department of Physics, Saitama University, Saitama 338-8570, Japan
(c) Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
(d) Key Lab. of Particle Astrophys., Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
(e) Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
(f) Department of Physics, Shandong University, Jinan 250100, China
(g) Institute of Modern Physics, South West Jiaotong University, Chengdu 610031, China
(h) Department of Physics, Yunnan University, Kunming 650091, China
(i) Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
(j) Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan
(k) Institute for Cosmic Ray Research, the University of Tokyo, Kashiwa 277-8582, Japan
(l) Department of Physics, Konan University, Kobe 658-8501, Japan
(m) Faculty of Systems Engineering, Shibaura Institute of Technology, Saitama 337-8570, Japan
(n) Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
(o) Center of Space Science and Application Research, Chinese Academy of Sciences, Beijing 100080, China
(p) Advanced Media Network Center, Utsunomiya University, Utsunomiya 321-8585, Japan
(q) National Institute of Informatics, Tokyo 101-8430, Japan
(r) Tokyo Metropolitan College of Aeronautical Engineering, Tokyo 116-0003, Japan
(s) Shonan Institute of Technology, Fujisawa 251-8511, Japan
(t) Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
(u) RIKEN, Wako 351-0198, Japan
Presenter: K. Kawata (kawata@icrr.u-tokyo.ac.jp), jap-kawata-K-abs1-he11-oral

The Tibet air shower array has been in operation since 1999 as Tibet III with an energy threshold of a few TeV.
As primary cosmic rays are shielded by the Moon having the finite size of 0.5 � in diameter, we observe a deficit
in cosmic rays called the Moon’s shadow with a significance of 40 � level for 1041 live days. The center of
the Moon’s shadow shifts westward depending on primary cosmic-ray energies due to the geomagnetic field.
We calibrate the absolute energy scale of the primary cosmic rays observed by the Tibet III array using this
effect. The Moon’s shadow simulation, including a precise calculation of the geomagnetic effect, shows a good
agreement with observational data. As a result, the systematic error in the absolute energy scale is estimated to
be less than approximately � 8% level by means of the geomagnetic field as a spectrometer.
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1. Introduction
The Tibet air shower (AS) experiment has been successfully operated at Yangbajing (90.522 � E, 30.102 � N,
4,300 m above sea level) in Tibet, China since 1990. The array was constructed first in 1990 and gradually
upgraded by increasing the number of counters, then the Tibet III array, used in the present analysis, was
completed in the late fall of 1999 [1]. This array consists of 533 plastic scintillation counters of 0.5 m � each
viewed by a fast-timing (FT) photo-multiplier tube, placed on a 7.5 m square grid with an enclosed area of
22,050 m � to detect high-energy ( � a few TeV) cosmic-ray showers. The AS trigger rate is about 680 Hz.

The observation of the Moon’s or Sun’s shadows by a ground-based AS array is very useful to calibrate the
performance of the AS array itself. Because almost all primary cosmic rays are positively charged, they are
bent westward by the geomagnetic field at Yangbajing, therefore, the position of the Moon’s shadow shifts
from the original Moon’s position. On the other hand, they are unaffected in the north-south direction as the
east-west component of the geomagnetic field is negligible ( � 10%) at Yangbajing. Since the geomagnetic
field between the Earth and the Moon is accurately measured and modeled, and the energy spectrum and the
composition of cosmic rays at ��� �!� TeV are measured by direct measurements, the observed position and
the shape of the Moon’s shadow enable us to calibrate the possible systematic error in the absolute energy
scale (westward shift), angular resolution and absolute pointing (north-south direction) by multi-TeV primary
cosmic-ray directions estimated by the AS event reconstruction procedure. In addition, the Moon’s and Sun’s
shadows are used as a tool to study the cosmic-ray "#%$&# flux ratio [2] and the interplanetary magnetic field
between the Sun and the Earth [3].

In this paper, we will report mainly on a method of the absolute energy scale calibration of multi-TeV cosmic
rays using the energy dependence of the westward shift in the Moon’s shadow observed by the Tibet AS array.

2. Simulation
We developed a detailed Monte Carlo (MC) simulation code of the Moon’s shadow assuming the geomagnetic
field is the dipole magneticfield model (moment ')(+*-, �/.102� � �43 Gauss cm 5 , south geomagnetic pole 78.3 � S,
111.0 � E). The relative chemical composition of primary cosmic rays was adopted based mainly on direct
observational data [4, 5, 6] in the energy range from 0.3 TeV to 1000 TeV. The AS events were generated
by the Corsika Ver.6.200 code [7] with QGSJET or SIBYLL for the hadronic interaction models along the
Moon’s orbit around the Earth. First, the generated secondary particles by the Corsika code are traced down
to the Yangbajing site, and time and charge information of each particle is converted to ADC and TDC values
by the detailed detector response simulation. Thus, we treat and analyze the MC events in the same way as
the experimental data. Secondly, an opposite charge is assigned to a triggered MC primary particle, and the
primary particle is imaginarily shot back toward the Moon from the Yangbajing site considering the estimated
the angular resolution by the detector response simulation. The primary particle which hits the Moon produces
the Moon’s peak. In this way, we obtain the expected Moon’s peak which is equivalent to the observed Moon’s
shadow.

3. Analysis
In the present paper, we employ the data obtained by the 22,050 m � array configuration described in 6 1 for
the whole period in order to simplify the analysis. The Tibet III array collected 78,9�:0;� �-<>= events during the
period from November, 1999 through October, 2004, and the live time is calculated to be 1041 days. The
event selection is made by imposing the following conditions on the recorded data: (1) Trigger threshold:
Each shower event should fire four or more of the inner FT-counters recording 1.25 particles or more; (2) Core
location: Among the 9 hottest FT-counters in each event, 8 should be contained in a fiducial area (22,050 m � );
and (3) Zenith angle: The zenith angle of the arrival direction should be less than 40 � . After these selections
and quality cuts, �!, ?@0A� �/<>= events remain for further analysis. In order to extract a deficit in cosmic-ray
events coming around the Moon, the background event density must be carefully estimated. The background
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is estimated by the number of events averaged over 8 off-source cells with the same size as on-source, at the
same zenith angle, recorded at the same time intervals as the on-source cell events. This method, so-called
“equi-zenith angle background estimation” [1], can reliably estimate the background events under the same
condition as on-source events.

4. Results and Discussions
The closed circles in Fig. 1 (a)–(f) show the deficit counts around the Moon projected to the east-west axis for
each BDCFE!G bin, where BDCFE!G is a sampling AS size defined as the sum of the number of particles per m � for
each FT detector. In these figures, the peak position of deficit counts shifts westward as the cosmic-ray energy
decreases. The solid histograms in Fig. 1 show the results by the MC simulation of the Moon’s shadow. These
results are in good agreement with the experimental data.

Fortunately, the north-south displacement of the Moon’s shadow observed by the Tibet III array does not de-
pend on the cosmic-ray energy, because the geomagnetic strength of the east-west component at our site is
negligible. Therefore, the displacement of the center of the Moon’s shadow in the north-south direction en-
ables us to estimate the magnitude of the systematic pointing error without the Moon’s shadow simulation.
Figure 2 (a) shows the energy dependence of the displacement of the Moon’s shadow in the north-south direc-
tion. A HI� fitting gives JK�8, �L�LMLN/�O�P�-, �-�L�Q� assuming a constant function independent of energy. From this,
the systematic pointing error is estimated to be smaller than �-, �-�L�R� .
Figure 2 (b) shows the shower size dependence of the displacement of the Moon’s shadow in the east-west
direction. In this figure, the open squares show the expected deflection, and the MC simulation is quite con-
sistent with the observational data. First, the MC simulation data points are fitted by a function S;TUBVC!EFGIWYX-Z
to define a curvature function, resulting in S = 6.895 and [ = 0.775 as shown by a dashed curve in Fig. 2 (b),
where MC statistical errors are negligible compared with the experimental data. Secondly, the experimental
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Figure 1. Closed circles show experimental data for deficit counts around the Moon projected to the east-west axis for each\^]!_Q`
. We use the events contained in an angular band, centered at and parallel to the east-west axis, compatible with the\^]!_Q`
-dependent angular resolution: (a): acb d egf for b&h:i \^]!_Q`kjmlQn

; (b): acb d oQf for
lpn i \^]!_Q`@jmqsr

; (c): atoLd uQf
for

q r i \^]!_Q`mj bYo o ; (d): atoRd q f for bYo ovi \^]!_Q`wjxn b q ; (e): atoLd l f for
n b q i \^]!_Q`mj e r e ; (f): atoLd n f for

e r e:i \y] _Q` j b&oQoQo , respectively. Solid histograms denote the Moon’s shadow simulation assuming a relative primary
cosmic-ray composition based on the direct observational data, while the dashed histograms represent the events induced
by protons.
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Figure 2. Shower size dependence of the displacement of the Moon’s shadow in the north-south direction (a) and in the
east-west direction (b). The closed circles show the experimental data, and the open squares represent the Moon’s shadow
simulation. The solid line in (a) shows the fitting to the experimental data assuming a constant function, resulting inz oLd oQo l e f amoLd oRbQb f . The solid and dashed lines in (b) are fitted to the experimental data and the MC simulation data,
respectively (see text). Upper scale indicates the log-scale mean of rigidity (TeV / { ) in each

\^]!_Q`
bin.

data (closed circles) is fitted by the curvature function 78, *L|F?~} B CFE!GOT>�LJ������LW���X�= � ���43 to estimate a possible
shift in the B C EFG between the experimental data and the MC simulation as shown by a solid curve in Fig. 2 (b),
where ��� � is the B C EFG shift ratio, resulting in ��� � (�T��cN-, *��+*8, M!W4� . However, we should convert this
to the energy shift ratio ���c� as a final result. To determine the relation between ��� � and ���c� , we prepare
6 simulation data sets in which the energy of primary particles is systematically shifted event by event in the
Moon’s shadow simulation. These 6 ����� s are � 20%, � 15% and � 8%, respectively. At each simulation data
set, the B CFE!G dependence of the displacement of the Moon’s shadow is calculated in the same way, and the
B C!EFG shift ratio ����� is estimated by fitting the curvature function of 7-, *!|!?-} B CFE!G1T>�!J������RW���X�= � ���43 as de-
scribed above. Finally, we get a relation ��� � = T>JK�-, |-�����-, �F?LW����c� assuming a linear function, therefore, the
systematic error in the absolute energy scale is estimated to be ��� � = T>J�N�, N���./, |!W�� . This result is calculated
based on the QGSJET hadronic interaction model in the AS simulation. Note that we also obtain a similar
result to the QGSJET one, based on the SIBYLL hadronic interaction model. As a result, the systematic error
in the absolute energy scale is estimated to be less than approximately � 8% level by means of the geomagnetic
field as a spectrometer.
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