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Triggering on Neutrino Bursts in LVD

N. Agafonova
�
, M.Aglietta

�
, P.Antonioli

�
, G.Bari

�
, V.Boyarkin

�
, G.Bruno

�
, E.Dobrynina

�
,

W.Fulgione
�
, P.Galeotti

�
, M.Garbini

�
, P.L.Ghia

�
, P.Giusti

�
, F. E.Kemp

�
, V.Kuznetsov

�
,

A.S.Malguin
�
, H.Menghetti

�
, A.Porta

�
, A.Pesci

�
, I.A.Pless

�
, V.G.Ryasny

�
,

O.G.Ryazhskaya
�
, O.Saavedra

�
, G.Sartorelli

�
, M.Selvi

�
, C.Vigorito

�
, L.Votano

�
,

V.F.Yakushev
�
, G.T.Zatsepin

�
and A.Zichichi

�
1 IFSI-INAF, Torino, University of Torino and INFN-Torino, Italy
2 University of Bologna and INFN-Bologna, Italy
3 University of Campinas, Campinas, Brazil
4 Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia
5 Massachusetts Institute of Technology, Cambridge, USA
6 INFN-LNF, Frascati, Italy
Presenter: W. Fulgione (fulgione@to.infn.it), ita-fulgione-W-abs1-og27-oral

The capability of a supernova neutrino detector to identify clusters of signals is discussed. A definition of
the detector sensitivity in terms of maximum detectable distance is proposed. Different trigger strategies,
implemented in the running LVD detector, running in the INFN Gran Sasso National Laboratory, are compared
and discussed.

1. Introduction

The detection of neutrinos from SN1987A marked the beginning of a new phase of neutrino astrophysics [1].
In spite of the lack of a “standard” model of the gravitational collapse of a massive star, the correlated neutrino
emission appears to be well established.
However since this first � observation was guided by the optical one, the detector capabilities of identifying
a � burst in the absence of an ”external trigger” should be demonstrated very carefully. In the presence of an
optical counterpart, on the other hand, the prompt identification of the neutrino signal could alert the worldwide
network of observatories allowing to study the rare event in all the different aspects since its onset.
LVD, located in Hall A of the INFN Gran Sasso National Laboratory (Italy), at the depth of 3500 m w.e., is
a 1 kt liquid scintillator detector consisting of 840 identical counters whose major purpose is monitoring the
Galaxy to study neutrino bursts from Gravitational Stellar Collapses (GSC) [2]. Its modularity and rock over-
burden together with the trigger strategy make this detector particularly suited to on line disentangle, from the
background, a neutrino signal. We will show in this paper the criteria for neutrino burst identification (section
2), consisting in two steps: the filters applied to the data and the selection algorithms. In section 3 we will
discuss the detector sensitivity in terms of physical parameters such as the fluence or the source distance.

2. Event Selection

2.1 Data Filters

There are two different filtering levels: the first is applied on the data, to reject signals not considered perti-
nent (e.g., atmospheric muons); the second is applied on the counters (to reject poorly performing ones) and
determines the LVD active mass (

�	��

�
). The following filters are applied to the data:

1. the energy corresponding to detected pulses must be � ����� ����������� ��� �!�
MeV ( � ���#"%$

MeV);
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2. coincidences among 2 or more counters in a time window &(' "�)*�!�
ns are rejected (muon rejection).

For the counters selection we reject:

1. counters that, during the previous run and after the energy cut, have a counting rate +-,/.10 � �3234 s
265

;

2. counters which participate to a cluster with a multiplicity 798 which correspond to :<;�=3>�?�@A79BDC 
FE �
� 0 ���G2IH , where 7 is the cluster multiplicity and C 


the number of active counters (topological cut).

2.2 Selection Algorithms

2.2.1 Time Sequence Algorithm

In the time sequence algorithm the searched signal is a cluster of pulses detected inside a time window of a
defined duration, &(' . All other signal characteristics like detailed time structure of the clustered pulses, energy
spectrum and flavor signatures, are left to a subsequent independent analysis. The signal is simply characterized
by its multiplicity 7 , i.e., the number of pulses detected during &(' , and by &(' itself.
Each time period of data taking J is scanned by an on-line algorithm, called Supernova Monitor, through a
“sliding window” that has been chosen of duration &(' "K)L�

s: J will then be divided into C "K) 0NMO �QP �
intervals, each one starting at the middle of the previous one. The background imitation frequency for a cluster
(m, 20 s) will be: RS8T>U@A7WVYX*Z[;\V )L� E "^]L_*`\� 0�:S;(=I>U@ )L� 0badcAe�Yf\g E event 0 day

2h5
Knowing the detector background rate, X!Z[; , to any imitation frequency corresponds a minimum multiplicity
7jidk of the detectable cluster (such that : ;(=I> @A7jilk E , �nm o 7pidk [3], to take into account fluctuations).
For LVD running in stand-alone mode the on-line alarm threshold is set at the level of R 8T> "q� 0 � �r2Is 0 y

265
,

corresponding to 7jidk/, )G�
. On the other hand, running in coincidence with other detectors (e.g., in the

SNEWS project [4]) naturally reduces the amount of fake alarms: in this case the LVD alarm threshold is set
to R 8T> "t� 0 week

2h5
, corresponding to 7uilkv, � _

.

2.2.2 The Inverse Beta Decay Signature

Independently on the unknown neutrino properties and in the frame of ”standard” Supernova models, it is
reasonable to state that the inverse beta decay (ibd) reaction ( w� �Sxpy{z}|(~{xW� ) is responsible for at least

oL�\�
of the total number of interactions due to a GSC in a Hydrogen-based detector. Since LVD is able to recognize
the ibd reaction with a known efficiency �D��� �rm _

, we consider, in each cluster, only “signed” pulses, i.e., those
accompanied by a delayed one (IBD-1). In the background imitation frequency formula, X Z[; is substituted by
X Z
;n� � , with X Z
;n� � " X Z[; @ ����

� E 0 w:S� Z[; "%)Gm ] 0 � �G23� 03���l���5 ��� ��� 2h5 ( w:�� Z
; being the average probability for a pulse
to be followed by a delayed one due to background).
Additionally, we can relax the condition on the ibd signature requiring that only part of the pulses in the cluster
are accompanied by delayed ones (IBD-2).
In this case we reject all the clusters which have a number of ”signed” pulses

���
, such: ���d� ;�d� k :�@���Vl7WV y E �

: k , where :�@���Vl7WV y E is the binomial probability to have r signed pulses in a cluster of multiplicity 7 . We
choose : k "��rmT�

as an example (the case : k "��
corresponds to the pure time sequence algorithm).

Both algorithms are of course more sensitive to lower multiplicities with respect to the pure time sequence one
(see table 1). However, because of the � -capture efficiency ��� , the IBD-1 method is less effective, while the
IBD-2, even if more efficient than IBD-1, still is not powerful enough to justify the loss in model independence.
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Table 1.
RS8T> "�� 0 � |(| � 2h5 RS8T> "�� 0 � � 2Is 0�� 2h5

strategy � ��� 7j>N8 �
s k�
k
� '  �¡ �£¢ ~<¤ ¥

�F¦Y§(¨ ?ª©� ¡ � �{« � � 7j>N8 �
s k�
k
� '  �¡ �£¢ ~<¤ ¥

�F¦d§(¨ ?�©� ¡ � �{« � �
time seq.

$ � _ )rm�� 0 � �r2I4D5 )r� )Gm ] 0 ���G2I4D5
IBD-1

$ $ )Gm _ 0 � �r2I4D5 ��� . m ` 0 ���G2I4D5
IBD-2

$ � ` @
¬ E �Lm o 0 � �r2I4D5 18(7)
)Gm ` 0 � �r2I4D5

time seq.
� � $ �!m .10 � �r2I4D5 ��� �Lm­$ 0 ���G2I4D5

IBD-1
� � ` �Lm ] 0 � �r2I4D5 _ )Gm ` 0 ���G2I4D5

IBD-2
� � _ @ ) E �Lm®) 0 � � 2I4D5 9(4)

�Lm _ 0 � � 2I4D5
Burst detection efficiency for different strategies and for two values of imitation frequency R 8�> , for�¯�
�
"-� �L�!�

ton. � ���
is expressed in MeV; ' in seconds. 7 >�8 � represents the minimum detectable cluster

multiplicity (90% c.l.) (between parenthesis the minimum number of double pulses requested in the cluster).

3. ° Burst Sensitivity

We discuss here the detector sensitivity in term of physical parameters, like for example the minimum de-
tectable fluence (time integrated � flux at the detector) or the maximum detectable distance.
The cluster multiplicity, 7 � , due to the signal, detected during a time interval &(' , in the case of pulsed w�L±
emission, is:

C ±[² "��¯³Y´[µ 0�C#¶10 �·0
O ��
k
� '  �¡I¸�¹ ~ k ¤ ¥ � �lº

�F¦Y§\»¼
½� ¡ »¼ ½ � ��« @��v¾¿ ½ El� �v¾¿ ½
where: � is the detector efficiency,

�À³d´[µ
[t] is the detector active mass, CÁ¶ is the number of free protons per

scintillator ton, « @�� ¾¿ ½ E is the neutrino interaction cross section, and
�F¦d§ »¼ ½� ¡ »¼
½ � � is the differential w�(± flux at the

detector.
In the absence of any hypothesis on the source emission spectra and on � oscillation parameters, we can ex-
press the detector burst sensitivity in terms of 90% c.l. minimum flux at Earth 0 cross-section, integrated over
&(' : � � ' � �F¦Y§� ¡ � � « � � " >NÂÄÃ 2 alc�e O

�
� ¸�Å�Æ Ç�È�Æ É . These are shown in Table 1, for the different selection criteria, and for

RS8T> "-� 0 � �r2Is 0 y
265

and RS8T> "-� 0 week
2h5

.
To infer the LVD sensitivity, we compare such values of

� � ' � � � �F¦d§� ¡ � ��« with the one measured by Kamiokande
II on the occasion of the SN1987A (at ¬ ) kpc), ranging between

_rm . and
$Gm®$ 0 ��� 234ds . 1 Under the hypothesis

of isotropic � emission, this value can be scaled to different distances: e.g., at 10 kpc, it would correspond
to

�Lm o 0 � �r2I4 k and
`nm­$ 0 � �r2I4D5 at 20 kpc. Comparing these with the results of Table 1, it follows that, with

any of the selection algorithms applied to LVD in the present background conditions, we get a burst selection
sensitivity well suited to cover the entire Galaxy. Based on such definition of sensitivity to neutrino bursts,
taking into account that the LVD active mass is dynamical, it is straightforward to derive that the detector is
sensitive to the entire Galaxy ( Ê �/)L�

kpc) if
����

� ,Ë¬ �L� t for R 8T> "-� 0 ���G2Is 0 y

2h5
.

Ì
The range is determined by the value of the detected number of events: either 11, if all the events are considered as ÍÎ(Ï interactions, or

9, when taking into account the possible contribution due to background contamination and elastic scattering on electrons [5].
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4. Conclusions

We have shown that the LVD neutrino observatory is able to identify on line neutrino bursts from Gravitational
Stellar Collapses occurring in the whole Galaxy. In the occurrence of the next galactic core collapse supernova,
even in the absence of an optical counterpart, LVD will be able to trigger other observations. This capability
is attained, besides through its large mass and deep location, by an optimization of the event selection chain as
we have described in the paper.
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