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Numerical simulations of test particle trajectories in a model Heliospheric Magnetic Field (HMF) allow 
calculations of local transport coefficients. The HMF model is based on spacecraft data at different 
heliospheric locations. The numerically estimated transport coefficients are used as input parameters on a 
numerical solution of the GCR transport equation for the case when qA>0. The solutions obtained with this 
set of parameters reproduce well the observed cosmic ray radial profiles up to at least 20AU on the ecliptic 
plane. 
 
 
1. Introduction 
 
In any attempt to solve the GCR transport equation it is necessary to have an appropriate knowledge of the  
parameters of K, the diffusion tensor, that contains elements describing diffusion along the field and 
perpendicular to it as well as the effects of drifts caused by the gradient ,curvature and the neutral sheet of 
the HMF.  The form and magnitude of  the drift effects are reasonably understood [1], however there are still 
efforts to try to understand parallel and perpendicular diffusion as these are closely related to the solar wind 
turbulence whose comprehension represents a major task [see, e.g. 2,3]. 
 

Here we take an alternative approach that does not make any special assumption nor relies in any theory 
regarding the form or structure of the turbulence. To solve the GCR transport equation we use parallel and 
perpendicular diffusion coefficients obtained with a numerical model to follow test particle trajectories. The 
model makes use of high time resolution spacecraft HMF measurements at different locations in the ecliptic 
plane of the heliosphere ranging from 1 to 20AU [see 4, and references therein].  In principle, all the local 
fluctuations are automatically incorporated in these simulations and their effects will be sensed as the test 
particles propagate in the so called layer model of the HMF. 
 
 
2. Model and Parameters 
 
Steenkamp  [5] developed a solution of the GCR transport equation: 
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where p is particle momentum V is the solar wind velocity and K is the diffusion tensor containing all the 
terms already mentioned. This solution has been applied to several aspects of the cosmic ray intensities, with 
the aim to reproduce the observations of different spacecrafts from the inner to the outer heliosphere [see, 
e.g., 6, 7].  
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As indicated by Ulyses observations we have used a solar wind velocity of 400km/s in the ecliptic regions, 
increasing between latitudes 10° and 30° to 800 km/s and constant in higher latitudes [8]. The heliospheric 
boundary was set at 90 AU. We have solved equation (1) only for proton species and for the case qA>0, at 
the heliosphere boundary we impose the proton spectrum of [9], it is shown in Figure 2. The HMF used is a 
modified Parker spiral field as given by [7]. 
 

Based on the test particle simulation diffusion coefficients obtained with the layer model from 1 to 20 AU 
we set: 
 

Krr= [4.67 β P (GV) f( r )g(θ)]  6x1020cm2/s 
 

Where   β  is particle speed in terms of the speed of light, 
 

 f( r)=r    for  r<30 AU and 1 for r>30AU ;   g(θ)=1+3cos (θ) 
 
Krr= Kθθ    throughout. The resulting mean free paths  λ= 3K/v  are given in terms of the parallel and 
perpendicular coefficients by λrr  = λ||  cos2  ψ + λ⊥   sin2  ψ , and  λθθ   = λ⊥ . The most notorious facts are 
the growth of  λrr  with radial distance and the “inverse” dependence of λrr  as compared with λθθ  as 
determined by the test particle numerical experiments. These functional forms have not been tried in the past 
with the present solution of equation (1).  
 

Gradient and curvature drifts are described in the standard manner by the asymmetric coefficient 
KT =βP/(3B)  of the diffusion tensor. The drift velocity is vd  =(βP/3)∇xB/B2 . The wavy neutral sheet has a 
tilt angle of 10° The solution is started with the initial condition that the LIS pervades the entire heliosphere 
and it is stepped forward in time until it reaches steady state. 
 
 
3. Results and Discussion 
 
The solid triangles and squares in Figure 1 represent the observations, the solid line shows the proton 
intensity spectra as obtained from the solution of equation  (1) at the Earth´s orbit, using the set of 
parameters presented in Section 2 of this paper; the dashed line corresponds to the LIS as given by [9]. 
Proton spectrum observations correspond to the balloon-borne BESS experiment on july  1997 [10],  and to 
the IMP8 spacecraft observations from 20 April 1997 to 23 March 1998, a period around the minimum of 
cycle 22, when qA>0. The BESS data serve as a good reference since they have higher accuracy and cover a 
wide energy range providing excellent information about the rigidity dependence of the modulation. The 
solution fits well the observations  from 102 to 104 MeV, showing that the set of transport parameters used in  
the solution is capable to reproduce features of the modulation process and thus validating the layer model of 
the HMF used in the test particle numerical experiments as a realistic representation of the turbulence found 
by GCR as they propagate into the Heliosphere. 
 

In Figure 2 we present the cosmic ray radial intensity profiles obtained from the solution of equation (1) for 
protons with an average kinetic energy of 175 MeV, in the range of energies used for the test particle 
simulations. The curves correspond to intensities at the ecliptic plane, at θ = 60° (latitude 30°),  at θ = 30° 
(latitude 60°) and at the pole. The intensities are normalized at the boundary, set at 90 AU.  Squares 
correspond to observations by various spacecrafts: IMP8 at 1AU, Voyager 2 at 1.8 AU, Voyager 1 at 2 AU, 
Pioneer 11 at 7 AU, 15°N, and Pioneer 10 at 12 AU in 1977 (qA>0).  The outermost two data points are 
from Voyager 2 at 56 AU, 24°S and Voyager 1 at 72 AU, 34° N, in 1997. Combining data from 1977 and 
1997 is justified by observations [12]. 
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Figure 1.  The proton spectrum obtained at 1AU compared with data from IMP 8 and BESS, and the Local Interstellar 
medium of  [9] used here as a boundary condition.
 
 
 
 
 
The radial profile produced by the solution in the ecliptic plane fits well all the observations from 1 AU to 
20 AU, the range of heliodistances covered by the test particle simulations.  Voyager 1 and 2 points at 54 
and 71 AU are close to the ecliptic radial profile. However, these spacecraft were 34°N and 24°S of the 
ecliptic plane in 1997, when these data were taken. They should therefore match with the dashed curve 
corresponding to polar angle 60° and not with the ecliptic plane curve. This is an indication that the 
latitudinal gradients produced by this solution are much higher than expected.  Additionally the intensity 
curves predicted by the present solution in the outermost portion of the heliosphere are perhaps too steep to 
be considered plausible. 
 

Nonetheless, bearing in mind that the test particle simulations were done with  data of spacecraft on the 
ecliptic plane, with no assumptions as to the latitudinal or radial structure of the turbulence, therefore with a 
very localized validity, it is encouraging that these parameters can reproduce observations just in the range 
of heliospheric locations where the simulations were done. This is a further proof that the layer model of the 
HMF is able to represent adequately  the local turbulence found by charged energetic particles and can be 
used to calculate  parameters that represent the transport conditions to which GCR are subject. 
 

The layer model of the HMF was also able to reproduce proper mean free paths in the case of  several Solar 
Proton Events [4]. 
 

Our results are valid only when qA>0 and particles drift from the ecliptic to outer latitudes. In the case qA<0 
we have not yet been able to obtain solutions that reproduce observations. 
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Figure 2.  Radial profiles of the solutions obtained from this work. Squares up to 12 AU correspond to spacecraft 
measurements in the ecliptic plane. The outermost two points are data at 30° latitude (see text). 
 
 
4. Summary and Conclusions 
 
In this work we obtained solutions of the GCR transport equation based on transport parameters calculated 
with numerical simulations of test particles into the layer model of the HMF that makes use of high time 
resolution spacecraft data. 
 

Solutions for 175 MeV protons at solar minimum conditions reproduce well the observed spectrum at 1AU 
and also the cosmic ray radial profiles in the ecliptic plane out to about 20 AU. The latitudinal and radial 
gradients in the outermost heliosphere obtained are too high to be considered plausible. In these regions 
assumptions were made as to the transport conditions, since there are no numerically determined transport 
parameters outside the ecliptic or further than 20 AU from the Sun. 
 

The layer model of the HMF can adequately represent transport conditions in localized places of the 
heliosphere. 
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