lceCube-Gen2における 新型光検出器D-Eggの

南極氷河特性較正用LEDの最適化

千葉大学 桐木彩由美

- 桐木彩由美
- 千葉大学大学院修士1年
- IceCube千葉大グループ所属(2017年4月~)
- IceCube-Gen2用検出器開発
- Geant4 simulation

Neutrino astronomy

π⁰

 Nuclei can be deflected by magnetic fields

- Gamma rays can be absorbed
- Neutrinos are difficult to stop and travel in straight lines

Physics of astrophysical neutrino sources =physics of cosmic ray sources

IceCube neutrino observatory

at South Pole 50 m 1450 m Eiffel Tower 324 m 2450 m 2820 m

Observatory for high-energy neutrinos

Digital optical module "DOM"

- 10" PMT looking down in sphere glass
- 60 DOMs on each of 86 strings
 High Voltage Generator & Digital Control Assembly Mu-Metal Magnetic Shield Cage
 Glass Pressure Sphere
- Neutrinos interact with atoms in the ice
- Cherenkov photons from secondary particles are detected by DOMs
- light pattern allows to reconstruct particle direction and energy

Neutrino event types

~600 m

- Charged current interactions of $\nu_{\rm e'}$ $\nu_{\rm \tau}$
- Neutral current interactions

Cascade-like events

Track-like events

- Charged current interactions of ν_{μ}
- Good angular resolution of 1°

IceCube-Gen2 project

Envisioned IceCube-Gen2

- + 120 strings, 10,000 new modules
- Phase 1, "IceCube Upgrade"
- + 7 strings, 100—125 new modules / string

Gen2 ~4 km

Hole ice

- Refrozen water in the drill holes
- Not well understood

Hole ice seen by camera

Importance of hole ice properties

Hole ice model has significant effects on reconstructions of cascade events

- Above ~1 TeV
- A mix of cosmic and atmospheric neutrinos
- Reconstructed arrival directions of

electron neutrinos

- Results largely depend on the choice of the hole ice model
 - \rightarrow the uncertainty of hole ice needs to
 - be improved

Mie scattering

Light scattering

Target size \leq wavelength/10 \Rightarrow Rayleigh scattering Target size \geq wavelength/10 \Rightarrow Mie scattering

Parameters of Mie scattering

- $\langle \cos \theta \rangle$: average cosine of scattering angle
- λ_s : average distance between scatterings

http://hyperphysics.phy-astr.gsu.edu/hbase/atmos/blusky.html

Hole ice measurements with D-Egg

Things to be understood

- Bubble size & distribution $\Leftrightarrow \langle \cos \theta \rangle \& \lambda_s$
- Bubble column diameter

Things to do

- Optimize LED profiles;
 Time profile / Intensity / wavelength
- Find observables sensitive to the hole ice properties

Implementing D-Egg to GEANT4

Simulation setting

- Light source:
 - Perfectly collimated
 - > Wavelength 405 nm
 - ▶ 10⁵ photons
- Simulated distribution of photons on photo cathodes with different values of $\langle \cos \theta \rangle$, λ_s and bubble column size
- Took into account PMT response (QE, CE)
- Checked how sensitive #PEs is to the parameters of hole ice

$\langle \cos \theta \rangle \& \lambda_s$

Bubble column size: 25 cm

- Less PEs as smaller $\langle \cos \theta \rangle$, shorter λ_s
- $\lambda_{\rm e} = 75$ —350 cm: Estimated region until • now(?)
- Effective scattering • length can be u v l log₁₀(average determined to be in a certain region→

4

3

2

1

0

-4

count)

Ы

Bubble column size & λ_e

- When large bubble column, more PEs as larger bubble column
 - ...Bubble column traps photons
- When small bubble column, no difference among bubble column sizes and scattering lengths
 - ...All photons arrive at the photo cathode through only clear ice

Wide angle LED \rightarrow

Bubble column size & λ_e

 $\langle \cos \theta \rangle = 0.95$ Effective scattering length [cm] 4 3 count) 2 ЫШ 1 10² ы с Г log₁₀(average l 0 10^{1} 10 20 30 40 50 Bubble column size [cm] Light source position: 21.7 cm

• Planar LED

- When large bubble column, 0.7
 more PEs as larger bubble column
- When small bubble column,
 - > less PEs as larger bubble column

0° 10° 20°

0.5

1.0

30

Bubble column size & λ_e

Outlook

- Independently understanding of the 3 parameters of hole ice: $\langle \cos \theta \rangle$, λ_s and bubble column size
 - Detection by other D-Eggs
 - ≻ Cameras inside D-Eggs
 →Probably the best way to know bubble column shape

- Systematic errors:
 - Intensity and angular distribution of LEDs
 - Alignment of 2 D-Eggs

- Hole ice is the refrozen ice in drilled holes
- Hole ice measurement is one of the major purposes of IceCube Upgrade
- D-Egg has flasher LEDs for hole ice study and now under development
- Goal of this study is to decide properties of flasher LEDs with GEANT4 simulations
- Simple ideal setting is introduced as a first simulation
- Checked how sensitive #PEs is to bubble column size and Mie scattering parameters (3 in total)
- In this setting, when 2 of the parameters are fixed, #PEs shows differences among the other parameter if bubble column is larger than light source position
- Another way of measurement is needed