TALE実験の現状と今後

藤原亮太(大阪市立大学 M1)

自己紹介

藤原 亮太(ふじわら りょうた) 大阪市立大学 宇宙線物理学研究室 M1 TALE-SDのハードウェアやソフトウェア の開発や研究をしています。

生まれも育ちも大阪です。

小学校から大学まで野球をやってました。 一応、阪神タイガースのファンです。

最近はゴルフにハマっています。

宇宙線

- ・宇宙を飛び交う、高エネルギーの粒子 エネルギー:およそ 10⁹ eV 以上粒子: 陽子, 原子核, 電子, etc.
- ・ある運動量 p の荷電粒子(電荷Z)が 磁場 B 中で運動するときの半径 r は、 r = p/(ZeB)
 - $r \propto \frac{E}{2}$ (∵近似的に p ∝ E)

→銀河系からのもれ出しが r に依存すると仮定するなら Kneeは陽子(Z=1)の閉じ込め限界で 2nd Kneeは鉄(Z=26)の閉じ込め限界を表しているのでは ないかと考えられる。

•Ankle付近の質量組成はpure protonであると考えられる。(銀河系外起源?)

 Cut-off: 宇宙線陽子がCMBと一回の相互作用で10%以上のエネルギーを失うため、~10²⁰ eVを超える エネルギーの宇宙線の地球に到来する頻度は格段に減少する。(GZKカットオフ)

sr⁻¹

×

CORSIKA software https://web.ikp.kit.edu/corsika/movies 4

2018/10/6

TA Low energy Extension (TALE)実験

- ・2次粒子群により空気中の窒素分子が励起され、結果として波長が 300 ~ 400 [nm] の大気蛍光が放射される
 ▶ FD ではこの大気蛍光を集光
- ・大気蛍光は微弱なため、月のない晴天の夜に観測実施
- ・宇宙線のエネルギー、到来方向、縦方向発達を測定

2018/10/6

TALE-FD

- ・縦方向発達とは
 - 空気シャワー中の粒子数は大気を進むにつれて
 増加し、最大を迎えたあと減少する様子
 - 粒子数が最大となるときの大気深さのことを
 X_{max}といい、縦方向発達の様子を表すパラメータ
 になる

TALE-SD

制御エレクトロニクス

- ・シンチレーション検出器(荷電粒子検出)
- 3粒子相当以上の信号の時刻情報と
 0.3粒子相当以上の信号の時刻と波形情報を記録 地表検出器(SD)

ハイブリッド観測

• ハイブリッド観測:地表検出器(SD)と大気蛍光望遠鏡(FD)を組み 合わせてより精度の良い同一イベントの観測を実現

ハイブリッドトリガーシステムの開発

 FDのトリガーに合わせて、SDでも波形収集を 行うハイブリッドトリガーシステムを開発した。
 >OCU内でハイブリッドトリガーシステムの実装へ 向け実験を行った。

- DAQサイクルは1秒で1サイクル。
- ホストPCは毎サイクル(毎秒)全SDからトリガーデータを収集する。(図:赤の領域[800ms])
 ▶ トリガーデータ...3粒子相当以上の信号の時間情報

 ホストPCはSDから集めたトリガーデータを調べて、コインシデンス判定を行う。 (図:黄の領域)

 ホストPCはSDから集めたトリガーデータを調べて、コインシデンス判定を行う。 (図:黄の領域)

- ホストPCはコインシデンストリガーがかかると、その時刻付近に波形を持っているSDから 波形データを収集する。(図:青の領域)
 - ▶ 波形データ…0.3粒子相当以上の信号の波形

ハイブリッド観測

• ハイブリッド観測:地表検出器(SD)と大気蛍光望遠鏡(FD)を組み 合わせてより精度の良い同一イベントの観測を実現

ハイブリッドトリガーシステムの開発

 FDのトリガーに合わせて、SDでも波形収集を 行うハイブリッドトリガーシステムを開発した。
 >OCU内でハイブリッドトリガーシステムの実装へ 向け実験を行っている。

DAQサイクル内でのFDからのトリガー受信

FDからの外部トリガー受信をホストPCのDAQサイクル内で行う

ホストPC

ホストPC (Raspberry Pi)

TALEサイトでの一枚(2018/09/12)

SD

HYBRID TRIGGER EVENT DATA(1)

- TALE-SD host PC(Raspberry Pi) output files
 - ・.Y file = 生データ
 - ・.H file = 生データからFDからの外部トリガー時刻情報
- TALE-FD hybrid trigger sending file
 - .hybtrig.log file = TALE-SDに対して送ったトリガー時刻情報を出力

y2018m09d18.hybtrig.log

11:34:53.007 Trig connection closed 11:35:20.741 filter: tid 6014 prescale trigger 1537270519.722193 physics criteria NOT USED for now 11:35:20.741 Trigger @ 1537270519.722193 #e1 0 13fb0511 11:35:20.741 Trig connected 11:35:22.723 Trig sent '11 5 fb 13' 11:35:32.723 Trig connection closed

MD091811.Y2018	MD091811.H2018
<pre>#T 000113ed 180918 113522 1714 322 0 #A 0 0 0 0 #C 0 0 0 0 L 5401 fffed824 0 321 0 019 2faef29 0 0 0 0 04 FD TRIG DATA RECV a = 0 a = 1</pre>	<pre>#End1pps #T 000113ed 180918 113522 1714 322 0 FD TRIG DATA RECV RECV DATA[0] = 13fb0511 319 722193 FD trigger judge start 13fb0511 #e1 0 13fb0511 #End1pps #T 000113ee 180918 113523 1821 323 0 waveform collect done timebin=319 usec=722193 13fb0511 #End1pps</pre>
Td_Tmp_Time[0]=13TD0511	

Hybrid trigger information (13fb0511)

timebin = $319(sec) \ \mu sec = 722193(\mu s)$

今後データ量が増えていけば解析をしていきます。

TALE sensitivity (MC study)

TALE 実験の 今後

 現在82台のSDで稼働しているため、全103台稼働に向けて エレクトロニクスをインストールし、さらにより低エネルギー側 の宇宙線を観測するために現在のTALEアレイよりも内側に 57台のSDの設置を計画中です。

まとめ

・TALE(TA Low energy Extension)は10^{16.5}-10^{18.5} eV領域の 宇宙線を観測

✓エネルギースペクトルを測定

✓2018年9月よりハイブリッド観測が行われおり、今後ハイブリッド解析を していき2nd knee(~2×10¹⁷ eV)領域の一次宇宙線の質量組成を明ら かにしていく。

TALEサイト内で牛の骨が落ちていました

ばっくあっぷ

31

化学組成と空気シャワーの縦方向発達の関係

宇宙線の質量組成とエネルギーの関係

・Ankleより大きいエネルギー(log₁₀E > 19)ではpure protonであると考えている。

・Knee((log₁₀E~15.5)から2nd Knee((log₁₀E~17.3)の間の質量組成は解明されていない

2018/10/6

TALE-FD

HiRes-FDs を再調整

鏡はMD-FDと同じ エレクトロニクス:8bits,10MHz FADC

(MD) ステーションに隣接 望遠鏡10台 仰角: 31°~57° 方位角視野: 114° 2012年11月に設置 2013年9月から定常観測

TA実験のMiddle Drum

2018/10/6

地表検出器(Surface Detector, SD)

- ・プラスチックシンチレータ上下2層
 - 3 m² × 1.2 cm × 2 層
- 各層ごとに光ファイバーで光電子増倍管(PMT)へ集光
- SDでの流れ
 - 1. シンチレータが発光
 - 2. 光ファイバーでPMTへ集光
 - 3. PMTで電気信号へ変換
 - 4. FADCで信号をデジタル値に変換

0.3粒子相当以上の信号: 700~800 Hz

3粒子相当以上の信号: 20~40 Hz

Mass composition (Average Xmax)

W. Hanlon et al., Proc. of ICRC 2017

J. Bellido et al., Proc. of ICRC 2017

Mass composition (Xmax distribution)

W. Hanlon in ICRC 2017

J. Bellido in ICRC 2017