神岡地下中性子スペクトル

YMAP 秋の研究会 2018 Oct. 05 水越 彗太 (大阪大学) 自己紹介

- ・水越彗太 阪大M2
- ・CANDLES III+ 実験
 - ・データ転送,低レベル解析
 - ・キャリブレーション
 - \cdot Simulation
 - ・<u>中性子BG測定</u>

neutrinoless double ß decay

- ・現在まで, 左巻きニュートリノ
 (h=-1/2)しか発見されていない.
 - 反ニュートリノは右巻き (h=1/2)
 - ニュートリノ(v)に質量があれば、
 ヘリシティの符号を転換可能
 - 振動実験により ν に質量があることは明
 らか
 - ・もし, νがMajorana粒子
 (νと反 νが同一)であれば,
 νを放出しないダブルベータ崩壊
 (0 ν β β)が起こりうる.

h: ヘリシティ
$$h = \frac{S \cdot p}{|p|}$$
 S: スピン
p: 運動量

νが光速でなければ,(m≠0)
 pが逆に見える慣性系が
 存在する.→hが逆転

CANDLES Experiment

- ·標的核に⁴⁸Caを用いた0 ν β β 実験
 - ・48Caは β β 核でQ値最大(4.3 MeV)

※典型的BG 208TI 2.6 MeV, 40K 1.5 MeV

オマケ: 暗黒物質探索における 中性子BG

- ・暗黒物質直接探索においては、 より直接的に中性子がBGとなる.
 - ・物理プロセスが同じなため,
 暗黒物質の反跳と区別不可
 - ・数MeVの中性子が
 主としてBGとなる
 - ・エネルギースペクトルも重要

- He-3 比例計数管
- $^{3}\mathrm{He}+\mathrm{n}\rightarrow ^{3}\mathrm{H}+\mathrm{p}+0.76~\mathrm{MeV}$
- ・低エネルギー(~0.025 eV)の 中性子は³Heに吸われる.
- · 0.76 MeVのエネルギー放出
- ・比例計数管でカウント
- ・中性子の元のエネルギーは わからない.
- ・高エネルギー中性子には低感度

高エネルギー中性子測定のエ夫

- ・ポリエチレンで高エネルギー
 中性子を減速させ検出
- ・逆に熱中性子はボロンで 吸収させ影響を抑える.

シミュレーションで見積もった効率

³He

"Setup A"

thermal

fast

実験結果+Simulations

- Setup AとSetup Bのカウント
 レートが得られるだけの実験.
- ・スペクトルなど望むべくもない
- スペクトルの形がU/Th系列核の (α,n)反応でできた中性子の減速 度合いだけで決まっていると仮定 すれば…?
- ・実験結果を説明できるスペクトル は黒でも青でもなく<u>赤線</u>に定まる.

シミュレーションで得られたスペクトル形

先行研究との比較1

- ・先行研究でラフに仮定
 されていたスペクトル形を
 明らかにした.
- ・数MeV領域にDipが存在
 する可能性を示唆した.
 - ・暗黒物質探索実験は
 中性子BGの影響を
 過小評価している
 可能性がある.

先行研究で仮定されていたスペクトル

先行研究との比較2

- ・総フラックスとしての絶対数を比較
- ・海外実験室とくいちがう結果に…

	Flux ×10 ⁻⁶ cm ⁻² s ⁻¹	熱中性子	系統誤差	熱以外	系統誤差
	Kamioka (This result, Mizukoshi)	7.88 ± 0.23	+0.63 -0.71	15.6 ± 0.5	+1.2 -1.4
	Kamioka (Minamino 2004)	8.26 ± 0.58		11.5 ± 1.2	
	Gran Sasso (A. Lindi 1988)	3.33 ± 0.37		2.56 ± 0.27	
>	LSM (K. Eitel 2012)	3.57 ± 0.32		1.06 ± 0.70	

10

フラックスの定義

- ・用いられているフラックスの定義が 異なっている!!
- (1)半径rの<u>球を通過した</u>粒子数を
 球の大円の面積(πr²)で割る.
 - ・原子核分野でよく使う定義
 - ・我々の用いた定義
- · (2)半径rの<u>円板を通過した</u>粒子数を,
 円板面積(πr²)で割る.
 - ・ 素粒子分野でよく使う定義
 - ・海外実験室の定義
- ・ 定義を合わせて比べると同等な値に.

定義2

めでたし,めでたし…

- ・過去の実験と矛盾のない結果が得られた.
 - ・総フラックス(23.52 ±0.68 +1.87 -2.13)×10⁻⁶ /cm² s

12

- ・興味深いスペクトル形がシミュレーションで得られた.
 - · このスペクトル形はあくまでシミュレーション依存, 今後,数MeVに感度のある検出器で実証実験予定
- ・論文書きました.

Measurement of ambient neutrons in an underground laboratory at Kamioka Observatory arXiv: 1803.09757

スペクトル形の決め方

・中性子の減速具合の
 パラメータを%of h.e.として
 岩石の水分量としてMCに組
 み込む.

・どの組み合わせでもほとん
 ど同じ形になる.

減速具合による中性子スペクトルの変化

U/Th系列以外の寄与(Muon)

- ・ U/Th系列核の寄与以外に
 宇宙線Muonの寄与が考え
 られる.
- 確かに,U/Th核より高エネ
 ルギー(>10MeV)の中性子
 を生成可能.
- ただし,U, Th系列の1/100
 の中性子しか生成できないので,本研究では無視した.

得られたスペクトル形の生成要因内訳