GRAINE2018年気球フライトの詳細およびコンバータフィルム 解析状況報告

名古屋大学 中村悠哉 他 GRAINE Collaboration

2018年気球実験打ち上げの様子(撮影中村悠哉)

2018/10/04 第3回宇宙素粒子若手の会秋の研究会@東大宇宙線研

自己紹介

中村悠哉 名古屋大学(F研)M2 F研の研究紹介 GRAINE(r線) ミューオンラジオグラフィー NINJA(加速器ニュートリノ) NEWSdm(ダークマター) その他(超冷中性子,アクシオン)

気球実験のために 2018年2月~5月の3ヶ月間 オーストラリアに滞在 (観光VISAが切れる日に帰国)

 \bigstar

SNR,GRB,AGN...

	Telescope	detected sources	
1990-2001	EGRET	271	
2008-	Fermi-LAT	>3000	

5 years, E>1 GeV

Un-Identified

Polarization

原子核乾板(エマルションフィルム)

宇宙γ線精密観測実験: GRAINE

γ線のエネルギー測定を担う

	<u>*10m²の場合</u>		
	Fermi-LAT	GRAINE	
角度分解能@100MeV	6.0°	1.0°	
角度分解能@1GeV	0.90°	0.1 °	
偏光感度	-	あり	
有効面積@100MeV	0.25m ²	2.1m ² *	
有効面積@1GeV	0.88m ²	2.8m ² *	

世界最高角度分解能 世界初偏光有感 世界最大口径

GRAINE計画

2004年– 地上での技術開発 2011年6月 JAXA国内気球実験

• 気球高度において観測コンセプトを実証

2015年5月 JAXA国際気球実験

- 海外サイトでの実験スキーム確立
- 中口径望遠鏡(0.38m²)のフライト 性能実証
 - イメージング性能の実証
 - 時間分解能の更新(10ミリ秒)
- 天体検出には至らず(部分的な不具合により)

2018年4月 JAXA国際気球実験

・天体検出による総合性能実証

 vela pulsarを100MeV帯域 (角度分解能1.0度)で優位に 検出することを目指す

2021年~

大面積望遠鏡による科学観測開始

GRAINE 2015

- ・2015年5月12日
- ・オーストラリア ABLS
- ・口径面積:0.38m²
- ・11.5時間@36-37km

GRAINE 2011

- ・2011年6月8日
- ・北海道 TARF
- ・口径面積:0.013m²
- ・1.6時間@35km

GRAINE 2018

- ・2018年4月26日
- ・オーストラリア ABLS
- ・口径面積:0.38m²
- ・14.7時間@36~38km

宇宙γ線精密観測実験: GRAINE

γ線のエネルギー測定を担う

	<u>*10m²の場合</u>		
	Fermi-LAT	GRAINE	
角度分解能@100MeV	6.0°	1.0°	
角度分解能@1GeV	0.90° 0.1°		
偏光感度	_	あり	
有効面積@100MeV	0.25m ²	2.1m ² *	
有効面積@1GeV	0.88m ²	2.8m ² *	

世界最高角度分解能 世界初偏光有感 世界最大口径

フィルム製造(2017年8月末~)

- 2018年実験に向けてより感度の 安定性に優れたフィルムに改良、 試験を行いデザインを確定 (2017年秋の研究会報告)
- 名古屋大学にて手塗り製造、
 8月末から4ヶ月かけて
 611枚(~58m²)を製造
- 製造バッチ毎に電子線ビームを 照射して感度をチェック

コンバーター製作(2018年1月~)

- 2015年実験ではこの処理をオーストラリアで実施したが、
 乾燥不良が原因で一部フィルム(~5.7%)が部分的に解析不可能となった
 (有効面積25%ロス)
- 2018年実験ではフィルムの長期安定性改善の効果もあり、日本で 実施可能となった

与圧容器ゴンドラへの実装(2018年3月~)

- 放球基地のある
 アリススプリングスで
 コンバーターを受け取り
- ・空気漏れをチェックした後
 与圧容器ゴンドラへ実装

フライト実施までのフィルムの冷却

 フライトに適した気象条件が整う までテント内でゴンドラごと フィルムを冷却しながら待機

放球に至るまで

- 3/30 全ての確認作業を終えてFlight Readyとなった
- 4/7 SMILEが放球
- 4/16 上層風の条件が整い放球に臨んだ

放球に至るまで

- 3/30 全ての確認作業を終えてFlight Readyとなった
- 4/7 SMILEが放球
- 4/16 上層風の条件が整い放球に臨んだ

放球に至るまで

- 3/30 全ての確認作業を終えてFlight Readyとなった
- 4/7 SMILEが放球
- ・ 4/16 上層風の条件が整い放球に臨んだ
 → 直前に地上風が強くなり断念
- 4/24 上層風の条件が整い放球に臨んだ
 - → 直前に地上風が強くなり断念
- 4/26 上層風の条件が整い放球に臨んだ

フライト、回収

撮影 JAXA 福家

Balloon flight

6:33, Launch Start flight operation ~8:33, Altitude of 38 km 14:48, Start Vela obs. oper ~22:15, Termination 23:17, Cut down 23:54, Landing with a parachute @900km E from Alice Springs 250km SW from Longreach

総飛翔時間:17h21m

Total flight duration of 17h21min (21%个 of GRAINE 2015) Level flight @38.1 – 35.4 km of 14h44min (28%个 of GRAINE 2015) Fully covered Vela pulsar in 45 deg zenith (10%个 of GRAINE 2015)

水平浮遊時間:14h44m

Google Earth

現像

- 回収したフィルムをシドニー大学
 へ輸送し現像処理を進めた
- のべ12日間,489枚(~44m²)を
 現像
- リフレッシュ時の乾燥不良による
 解析不能なフィルムはなかった
 (1枚の現像エラーのみ)

フライト成功!!フィルムを日本に持ち帰り解析を開始

飛跡の自動読み出し

乳剤層を16層の断層画像で撮影

パルスハイト(ph):16層の内のヒットレイヤー数 ph閾値を越えたものを飛跡として出力

飛跡の自動読み出し

乳剤層を16層の断層画像で撮影

パルスハイト(ph):16層の内のヒットレイヤー数 ph閾値を越えたものを飛跡として出力

フライトフィルム膨潤処理

コンバーターフィルムの全面スキャン

・コンバーターフィルム400枚を 全面スキャン(|tan θ x,y|<1.26)

1枚のフィルムを9areaに 分割してスキャン

•

スキャンデータの性能評価
 をしながら全面スキャン

- → フィルム毎の飛跡検出効率
- → フィルム間の飛跡接続精度 (位置、角度)

9areaに分割スキャン

飛跡検出効率の求め方

飛跡検出効率 = トリガー&評価フィルムでの接続本数 トリガーフィルムでの接続本数

lareaでの飛跡検出効率の角度依存性

lareaでの飛跡検出効率の位置依存性

1枚のフィルムの飛跡検出効率の位置依存性

フィルム毎の飛跡検出効率

コンバーターフィルムスキャン状況

- 5月末にフィルムを日本
 に持ち帰ってから表面銀
 取り、膨潤を進めてきた
- ・並行してスキャンの条件
 出しを進め、7月末より
 全面スキャンを開始
- 12月中に全て終了予定

まとめ

- •GRAINE計画:気球搭載型エマルションγ線望遠鏡による宇宙γ線精密観測
- •2018年4月気球実験実施(目的:望遠鏡の総合性能実証)
 - フィルム製造、コンバーター製作(@名古屋大学) 611枚(~58m²)を製造、リフレッシュ,乾燥後コンバーター4ユニットを製作
 - フィルム実装(@アリススプリングス放球基地) 与圧容器ゴンドラへのフィルム実装後はテントで**フィルムを冷却しながら待機**
 - フライト、回収

総飛翔時間17h21mで目標天体の観測可能時間を確保、翌日に迅速な回収

– 現像(@シドニー大学)

12日間で489枚現像、リフレッシュ時の乾燥不足によるエラーフィルムなし

- •フィルムの解析を開始
 - -最適な膨潤厚みを検討(59~65µm)、表面銀とり、膨潤は全て完了
 - 解析した25枚のフィルムほぼ全てで**飛跡検出効率95%以上を達成(**tan θ < 1.0)
 - 全面スキャンを継続中、1/3程度が終了。12月中に全フィルム完了予定

原子核乳剤(エマルション)

ゼラチン中にAgBr 結晶を充填

荷電粒子の電離作用によ りできた電子が銀イオン を還元し銀核が生成 ー定数以上の銀核を持つ 結晶のみを選択的に還元 させ銀粒子を成長させる 未反応のAgBr結晶を溶 かし出す

高い空間分解能を持ち、3次元の飛跡情報を記録できる

e+/-

e-/+

10micron

Gamma-ray

.....

潜像退行(フェーディング)

・現像後に縮んだフィルムをスキャンに適した厚みに膨らませる

10月,シドニー大学訪問時にエマルションフィルムを携帯

シフター機構により入射タイミングを識別

・空輸(0.5日)時は
 全蓄積の1/10程度
 ・陸路輸送時は
 全蓄積の数分の1程度
 →フライトデータ
 解析に支障はない

	Fermi-LAT	GRAINE	eASTROGAM	ComPair	HARPO
Converter & Tracker	W (0.03/0.18Xo) & SSD	Emulsion	両面読みSSD	両面読みSSD	ガスTPC
Energy Range	20 MeV – 300 GeV	10 MeV – 100 GeV	10 MeV – 3 GeV (pair)	10 MeV – 0.5 GeV(pair)	MeV – GeV
角度分解能 @100MeV	6.0°	1.0°	1.5° (requirement)	1.5°	0.4°
角度分解能 @1GeV	0.9°	0.1°	0.2° (requirement)		
偏光感度		有り			有り
有感面積	1.96m² (有効面 積0.25m ² @100MeV)	10m² (有効面積 2.1m ² @100MeV)	0.9m ²	0.9m ²	未定 (有効面積 0.03m ² w/ 10kg Ar)
観測開始	2008	2021	未定(早くて2029)	未定	未定
打ち上げ	NASA	JAXA (気球)	ESA?	NASA?	未定

原子核乾板技術でのみ実現可能

M.Yoshimoto et al., PTEP 2017 103H01

スキャン厚み自動判定モードの導入

厚み固定値モード(従来)

スキャン厚み自動判定モードの導入

厚み固定値モード(従来)

自動厚み判定の妥当性の評価

GRAINE2018年実験に向けたフィルム開発

GRAINE2018年実験に向けたフィルム開発

- 2015年実験で乳剤中の
 臭化銀結晶の体積重点率=55%
 と従来の2倍程度にした
 高感度フィルムを開発
- 高い飛跡検出効率を達成した一方で、
 潜像退行による検出効率の大幅な低下、
 長期的な感度の不安定性を伴った
- 2018年実験に向けて体積重点率を
 見直し、55%→45%に変更
- 高い検出効率を維持しつつ潜像退行
 特性を改善、フライト終了後の回収ま
 で猶予日数が2倍以上になった

