

# CTA 小口径望遠鏡用焦点面カメラの統合試験

中村 裕樹

**名大ISEE** 宇宙素粒子若手の会 第3回 秋の研究会、宇宙線研究所、2018/10/04



#### 自己紹介



- ≫ 中村 裕樹 (なかむら ゆうき)
- »名古屋大学 宇宙地球環境研究所 (ISEE)
- ≫博士後期課程1年(D1)
- » Cherenkov Telescope Array (CTA)
  - ≫ 小口径望遠鏡(Small-Sized Telescope, SST)
  - ≫ 焦点面カメラ
    - ≫ 光検出器 (SiPM)
    - » キャリブレーション



#### 講演プログラム

|                                                   | 一日目(10/15) 場所:宇宙線研究所 6F 大セミナー室                                                                  |                                   |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|--|
| 14:00-14:45                                       | 受付                                                                                              |                                   |  |
| 14:45-15:00                                       | 開会式                                                                                             |                                   |  |
| 15:05-15:20                                       | ナビゲータートーク:重力波                                                                                   | 長野 晃士 (東大 ICRR)                   |  |
| 15:25-15:40                                       | ナビゲータートーク:大気検出器                                                                                 | 石崎 渉(東大 ICRR)                     |  |
| 15:45-16:00                                       | ナビゲータートーク:地下実験                                                                                  | 中野 佑樹 (東大 ICRR)                   |  |
| 16:05-16:20                                       | ナビゲータートーク:原子核乾板                                                                                 | 森下 美沙希 (名古屋大)                     |  |
| 16:25-16:40                                       | ナビゲータートーク:素粒子実験                                                                                 | 伊藤 博士 (神戸大)                       |  |
| 16:40-17:00                                       | 休憩                                                                                              |                                   |  |
|                                                   | 招待講演1 (座長:石崎 渉)                                                                                 |                                   |  |
| 17:00-18:30<br>(17:30-17:40 休憩<br>18:10-18:30 質疑) | Introduction to Gamma-ray Astrophysics - Active Galactic Nuclei<br>&Cosmic Gamma-ray Background | 井上 芳幸<br>(国立研究開発法人<br>宇宙航空研究開発機構) |  |
|                                                   |                                                                                                 |                                   |  |
| 19:30-21:00                                       | 懇親会                                                                                             |                                   |  |

|                                                   | 二日目(10/16) 場所:宇宙線研究所 6F 大セミナー室          |                    |
|---------------------------------------------------|-----------------------------------------|--------------------|
|                                                   | 招待講演2 (座長:森下美沙希)                        |                    |
| 10:30-12:00<br>(11:00-11:10 休憩<br>11:40-12:00 質疑) | (IceCUBEにまつわるお話)                        | 吉田 滋<br>(千葉大学)     |
| 12:00-13:00                                       | 昼食                                      |                    |
|                                                   | session1:開発1 (座長:中村輝石)                  |                    |
| 13:00-13:20                                       | CTA 小・中口径望遠鏡焦点面カメラ用 SiPM の開発状況          | 中村 裕樹 (名古屋大)       |
| 13:20-13:40                                       | 改良されたラドン検出器の性能評価について                    | 岡本 幸平 (東大<br>ICRR) |
| 12:10 11:00                                       | ▲ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 稲田 知大 (東大          |

### 大気チェレンコフ望遠鏡





# **Cherenkov Telescope Array (CTA)**

![](_page_3_Picture_1.jpeg)

大口径望遠鏡(LST) 直径:23 m エネルギー:20 GeV - 3 TeV 台数:4(北)+4(南) 中口径望遠鏡(MST) <sub>直径</sub>:12 m or 9.6 m エネルギー:80 GeV - 50 TeV 台数:15(北)+25(南) 小口径望遠鏡(SST) 直径:~ 4 m エネルギー:1 - 300 TeV 台数:70(南)

![](_page_3_Figure_5.jpeg)

![](_page_4_Picture_0.jpeg)

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

小口径望遠鏡

![](_page_5_Picture_1.jpeg)

- »3種類の望遠鏡が提案され、それぞれの試作望遠鏡でチェレンコフ光の観測を成功させた
- » 小口径望遠鏡デザインの最終決定に向けて進めている

![](_page_5_Figure_4.jpeg)

### 半導体光電子増倍素子 (SiPM)

- ≫ MAPMT を用いたカメラでのチェレンコフ光の観測を成功させた(J. Zorn et al. 2018)
- »カメラのアップグレードに向けて光検出器を半導体光電子増倍素子(SiPM)に置き換えた
  - ≫ 高い光検出効率:40% 以上
  - » 低い動作電圧:~50 V
  - » 夜光の多い状況でも観測可能
  - ≫ オプティカルクロストークの発生
    - » 単一光電子を増幅し、複数光電子として検出してしまう現象
    - ≫ トリガー閾値を下げられない
    - ≫ 電荷分解能を悪化させる
  - » ゲインの温度依存性
    - » ダイナミックレンジ、トリガー閾値を変化させる
    - » 温度をモニターし、補正することが必要

![](_page_6_Picture_14.jpeg)

![](_page_6_Figure_15.jpeg)

![](_page_6_Picture_16.jpeg)

![](_page_7_Picture_1.jpeg)

CTA South 0.5 h

- » TeV ガンマ線源に対する感度向上が重要
  - ≫ 有効面積の拡大 ✔
  - ≫ 観測時間の増加
- » PMT の寿命の制限によって月夜の観測が難しい観測時間は年間10%程度
- 銀河中心のガンマ線スペクトル » SiPM では寿命の制限を受けない →月夜でも観測可能なため観測時間の増加

![](_page_7_Figure_7.jpeg)

### 焦点面カメラの統合試験

![](_page_8_Picture_1.jpeg)

#### » SiPM に置き換えた焦点面カメラを組み上げ統合試験を進めている

- » ダイナミックレンジの調整
- » 波高積分値分布の作成と SiPM の特性評価

» ゲイン

- » オプティカルクロストークレート
- ≫ 波高積分値と検出光電子数の関係の決定
- ≫ 電荷分解能
- ≫ トリガー性能
- » 温度特性
- » モニタリング
  - ≫ 温度
    - SiPM
    - ・ カメラモジュール
    - ・ バックプレーンボード
  - » トリガーレート

#### » 望遠鏡に搭載しての試験観測を予定している

![](_page_8_Picture_18.jpeg)

© CTA Consortium

### 焦点面カメラの温度特性

![](_page_9_Picture_1.jpeg)

- » SiPM の降伏電圧は温度依存性を持つ
  - ≫ 温度によってゲイン、ダークカウント、光検出効率が変化する
  - » 温度の変化に応じて印加電圧の調整が必要である
- » 焦点面カメラは 400–500 W の熱が発生するため、水冷でカメラを冷却している
- » 室温での測定ではSiPM の温度を最大 1 °C 程度の変化で制御可能(温度変化 ~5 °C)

![](_page_9_Figure_7.jpeg)

1 °C

### ゲインの温度依存性の測定

![](_page_10_Picture_1.jpeg)

- ≫ 冷却水の温度を変化させ意図的にカメラの温度を 変化させることでゲインの温度依存性を測定した
- ≫ 観測中のトリガー閾値を安定にするために印加電圧 を調整する
  - ≫ 印加電圧は 4 画素ごとに設定するため、
    4 画素の平均を代表値とした
  - ≫ フィット直線からのずれは 3% 程度であり 1 p.e. の 波高値に対して十分小さい
  - » 傾きの変化は ASIC の温度依存性が含まれている
- » SiPM の温度から最適な印加電圧を計算する

![](_page_10_Figure_8.jpeg)

![](_page_10_Figure_9.jpeg)

![](_page_10_Figure_10.jpeg)

# 温度補償によるゲインの安定性の検証

![](_page_11_Picture_1.jpeg)

- ※ 冷却水を用いて SiPM の温度を変化させてゲインの安定
  性を検証した
  - » SiPM の温度から印加電圧を決定した
  - ≫ 実際の観測時はカメラの温度が 15–25 °C で使用する ことを想定している
- » ゲインの平均値の変化
  - » 印加電圧補正時:~10% (補正なし:~20%)
  - » 閾値の設定に対して十分小さな変化

![](_page_11_Figure_8.jpeg)

![](_page_11_Figure_9.jpeg)

![](_page_11_Figure_10.jpeg)

### 温度補償時の波高値の確認

![](_page_12_Picture_1.jpeg)

- » 50 p.e. 相当照射時の波高値を確認した
- » 簡単のため波高積分値で温度依存性を測定したが、波高値が揃っていなかった
  - » トリガーを安定にするという観点から波高値を揃えないといけない
  - » ASIC の温度依存性が記録電圧値によって異なる
- » 波高値の分布からゲインを測定し補正値を決定する
- » ASIC 単体で温度依存性を測定する
- ≫ 印加電圧は SiPM の超過電圧の調整のみ行う

![](_page_12_Figure_9.jpeg)

まとめ

![](_page_13_Picture_1.jpeg)

#### » SiPM を光検出器に置き換えた焦点面カメラの統合試験を進めている

#### ≫ 温度特性試験

- » 印加電圧の調整によってゲインの変化を8%に抑えることができた
- » 波高値の分布から温度依存性を測定する
- » ASIC 単体での温度依存性を測定し補正する
- » SiPM の降伏電圧の変化のみ印加電圧を補正する

#### ≫ 望遠鏡に搭載しての試験観測を予定している

- ≫ ガンマ線由来のチェレンコフ光を観測する
- » µ粒子から生じるチェレンコフ光を用いたエネルギー較正を実施する
- ≫ 複数の夜光条件で観測し、エネルギー分解能・トリガーへの影響を調査する

#### » LST 初号機で良い結果が出ることに期待!