

方向に感度を持った 暗黒物質探索実験NEWAGE

2017.10.17

第2回宇宙素粒子若手の会秋の研究会 @東京大学宇宙線研究所柏キャンパス 神戸大学 池田智法

直接探索実験の紹介

Direction Sensitive WIMP-search NEWAGE

液体シンチ XMASS XENON1T LUX Darwin LZ PANDAX DEAP3600 ANKOK

泡箱

結晶シンチ

SABRE PICOLON DAMA COSINE-100 CRESST-3

半導体

SuperCDMS EDELWEISS-3 DAMIC CDEX

原子核乾板 NEWS-DM

PICO

XNONE 1T

直接探索現状(2013まで)

Direction Sensitive

WIMP-search

- Nalを用いた直接探索実験
- 季節変動の観測を唯一主張
- 2-6keVで9.3σの観測

方向情報

NEWAGE : Detector Concept

2017/10/17

Direction Sensitive

WIMP-search

NEWAGE : Detector Concept

μ -PIC (30cm \times 30cm)

Detector Performance

÷

K.Nakamura et.al, PTEP(2015)043F01s

- Nuclear track detection efficiency : ~40% @ 50keVee
- Gamma rejection : 2.5e-5 @ 50keVee
- Energy resolution : 7.8keV(σ) @ 50keVee
- Angular resolution : 40° (σ) @50keVee

2017/6/13

Direction-sensitive limit

K.Nakamura et.al, PTEP(2015)043F01s

Direction Sensitive

Red : directional analysis Blue : spectrum analysis

- Obtained limit: 557pb@200GeV
- Improved one order of magnitude from first underground RUN

After RUN14

- Continued underground RUN
 - Period : 2013/7/20 2016/8/24
 - Live time : 230.2days (RUN14-17)
- Optimized cut parameters
 - 50keV-100keV region : improved gamma/α rejection efficiency

2017/6/13

Background Study

By Takashi Hashimoto

- Main BG is alpha particle from μ-PIC
 - Measured by high pure Ge detector

U/Th contamination

	²³⁸ U [μBq/cm ²] middle stream [†]	²³² Th [μBq/cm²]
Pl 100μm	68.5 ± 1.5	102.1 ± 2.3
Glass cloth	64.5±0.1	86.8±1.1
(PI)-(Glass cloth)	4.0±1.5	15.3 ± 2.6

- U/Th in the Polyimide 100um can be explained by U/Th of glass cloth
- Two approach for reduction of BGs
 - Low $\alpha \mu$ -PIC
 - Full-fiducialization analysis using Negative Ion

Cross-section view of µ-PIC

Development of Low α $\mu\text{-PIC}$

By Takashi Hashimoto

PI + epoxy

- Production of μ-PIC with low radioactive materials
 - Glass cloth was used as reinforced material
 - Epoxy can be replacement

U/Th contamination

	²³⁸ U[ppm]	²³² Th[ppm]	
PI including glass cloth	0.39±0.01	1.81±0.04	
PI+epoxy	< 2.98×10 ⁻³	< 6.77×10⁻³ ←	New materia

Polyimide+epoxy has 1/100 radioactivity

Performance of Low α $\mu\text{-PIC}$

Ocm

By Takashi Hashimoto

- The Low α μ -PIC was successfully created
 - Detection area : 10×10 cm² and 30×30 cm²
 - Alignment is good

- Gas gain is almost the same as standerd $\mu\text{-PIC}$
 - Max gas gain is about 5000
- The Low α $\mu\text{-PIC}$ with large size will be installed in July 2017
- 2017/6/13

CYGNUS2017

580 600 Anode_V[V]

陰イオンガス検出器の開発

- 陰イオンガスを用いたZの位置決定
 - DRIFTグループ(英・米)が陰 イオンガスCS₂を用いて MWPC-TPCでZの絶対位置決 定に成功
 - ガス検出器でも有効体積カットが可能に

Physics of the Dark Universe 9-10(2015)1-7

- NEWAGEグループでも2015年から陰イオ ン検出器の開発
 - SF₆+CF₄ガス
 - Zの位置分解能2.5cm(RMS)
 - 飛跡の2D位置分解能130um

γ線を分離し**Wil段階でady by April 2018**ンド源は、検出器内部の放射性不純物である。特に希ガスのラド は検出器構成物質からガス中へとしみ出し、ガス中でα崩壊を起こす為、問題となる。通常、ラドンの崩壊 Expect two order improvement

2017/10/17

- NEWAGEは方向に感度を持った暗黒物質探索実験
- 方向情報を用いた解析で557pb@200GeV
- R&Dとして、低BGµ-PIC、陰イオンガス検出器の開発を行っている
- 将来1m³級の検出器を用いて世界初の方向感度でDAMA領域の探索を行う

Next stage

epen**it**

	Summary		_
	μ -PIC + GEM + SF ₆		
Gas gain	2000		
Z resolution	6.8cm	Need more study	
XY resolution	130um		

- Development of ASIC for NI-µTPC
 - Wide dynamic range : -10pC \sim 10pC
 - High gain : 10mV/fC
 - Slow shaper : 4us

	LINGSOIGHE		
	*****************	1	
-		1.000	
_		Column 11	
_			
		1000	
		100	
-		1000	
-		1000	
-		Accession 14	
Ε.			
		-	
		1000	
		- 10	

← LTARS2016_K01 TEG chip

ASIC test board \rightarrow

- Tracking with detection of minority carrier

3D Track

- Tracking was succeed
- 2D position resolution : 130µm(RMS)

trigger strip

2017/6/13

ガス検出器と暗黒物質実験の世界

• MWPC(2mm pitch)

• First started gas

detector

- Underground
- Low background
- Large size(~1m³)

10² M_{WIMP} [GeV]

μ-ΤΡϹ

cm

MIMAC

- Microl Scalar (~424um
- pitch)
 - Underground
 - \cdot 10 \times 10 \times 25 cm³

DM-TPC

25cm

1m

- CCD(256um pitch)
- 2D track
- Head/tail recognition
- Underground

- μ-PIC(4, pitch)
- 3D track

NEWAGE

- Direction-sensitive limit
- Underground

XENON1T最新

[arxiv:1705.06655]

Underground RUN14

CYGNUS20 20

K.Nakamura et.al, PTEP(2015)043F01s

• RUN14

- Period : 2013/7/20-8/11, 10/19-11/12
- Live time : 31.6 days
- Fiducial volume : $28 \times 24 \times 41 \text{ cm}^3$
- Mass : 10.36g
- Exposure : 0.327kg · days

Energy spectrum

- Threshold : 100keV → 50keV
- BG rate : 1/10 @100keV
- Skymap, cos0 distribution
 - Set limit by significant difference in 2-binned measured cosθ and DMwind simulated cosθ

