地下の環境中性子測定

- ・水越彗太 (Mizukoshi Keita)
- 神戸大学から大阪大学へ
- CANDLES IIIp @神岡
 - 解析,モンテ

エネルギーキャリブレーション

• 中性子BG測定

• ←After

CANDLES III plus

- CANDLESは⁴⁸Caを標的核
 としたニュートリノレス
 ダブルベータ崩壊探索実験
- ・ ⁴⁸CaはQ値最大(4.3 MeV)
- ・ゼロバックグラウンド
- 次の目標は⁴⁸Caの濃縮,
 ボロメーターの導入

地下中性子研究動機

ニュートリノレスダブルベータ実験やダークマター探索
 実験などの地下実験で環境中性子が背景事象となりうる.

中性子測定コンソーシアム

- 実験を超えて技術/機材を共有し
 環境中性子の理解を目指す.
- 実験グループ
 - CANDLES, XMASS, NEWAGE, ANKOK, NEWS
- 検出器
 - ³He比例計数管, Nalシンチレータ
 液体シンチレータ, 原子核乾板

本研究の動機

- ・様々な方法で測定が試みられているが, 中性子の**エネルギー測定は難しい**.
- ・地下BG研究ではエネルギーが重要.
- 先行研究ではエネルギースペクトルを 経験則から仮定して結果を出している.
 - ・先行研究はスペクトルの<u>仮定が</u>
 <u>結果の解釈に大きな影響を与える</u>
 ことを示している.
- ・→シミュレーションでスペクトル形を 明らかにして,実験結果を評価する.

3He 比例計数管

- ・³He比例計数管は**熱中性子**を測定すること に優れた検出器である.
 - ${}^{3}\text{He} + n \rightarrow {}^{3}\text{H} + p + 0.764 \text{ MeV}$
 - 5333 barn @ 0.025 eV neutron
- 数keV領域程度の中性子はエネルギー測定 が難しく,また実験のBG理解に重要である.

³He 10atm

480mm

³He比例計数管はKEK放射線科学センター

岸本氏に貸していただいた.

YMAP秋の研究会 2017.10.17 水越彗太 (大阪大学)

φ51mm

シミュレーション概要

• 岩石組成測定

- ・ 粉末試料を用いたXRF半定量分析
- · ミューオンフラックス
 - SK/KamLand/Chooz simulation
 - Alfred Tang et al. (Phys.Rev.D74:053007,2006)
- ・ 宇宙線由来の中性子
 - **Geant4** (QGSP_BERT_HP + muon-nuclear + gamma-nuclear)
 - U/Th 系列含有量
 - Ge detector & Geant4
- (Alpha,n) cross-section
 - <u>NeuCBOT(TALYS database)</u>
 - Author: Shawn Westerdale
 - https://github.com/shawest/neucbot
- ・ 中性子輸送 Geant4

不定性大

1.U/Th 系列由来中性子

- ・U/Th系列の崩壊からの(alpha,n)反応で生成される中性子のエネル ギー**スペクトルの形**が他の地下実験室でのシミュレーションと**一致**.
- ・²³⁸Uの自発核分裂(赤)は未実装→今後の課題,Geant4で可能.

2. ミューオン由来中性子

- ・ Geant4を用いてミューオンが生成す る中性子を評価した.
- Physics list: QGSP_BERT_HP +muon-Nuclear + gamma-Nuclear
- ミューオン由来の中性子は地下実験 室ではU/Th由来の中性子の
 I00分のI程度の量である.
- ・U/Thの崩壊からは生成され得ない **高エネルギーの中性子**が生成される.

総中性子スペクトル

- 前述の起源からの中性子らが岩盤中で 減速,輸送される.
 (右:軸が異なる同じ総中性子スペクトル)
- ・ ※上図:低エネルギー領域は縦軸範囲外
- ※下図:縦軸横軸LOG
- 熱中性子領域はBoltzmann分布,高速中性 子領域はI/Eになるという経験則と矛盾 しない.
- ・数keVの領域の中性子が少ないことがシ
 ミュレーションによって示唆される.
 →スペクトル形についての新結果

- 初めての結果
- 先行研究の仮定スペクトルと矛盾しない
 - YMAP秋の研究会 2017.10.17 水越彗太 (大阪大学)

R. Taisyaku, Master thesis of

Kobe University (2017)

- ・シミュレーションにより神岡地下での中性子の スペクトルを仮定した最初の結果を得た.
 - 系統誤差を評価して論文をかく.
- ・次の目標
 - ・年次変動,坑内場所依存,飛来方向,...など
 - ・仲間(+資金)を増やして網羅的な理解を目指す

結論と今後の課題/展望

- シミュレーションにより神岡地
 下での中性子のスペクトルを仮
 定した最初の結果を得た.
- 課題
 - ・ 系統誤差の評価
 - ・岩の組成の違い,中性子輸送の不定性
 - ・ 仮定したHの量の妥当性の評価
 - 減速材あり/なしで検出数が
 実験に合うようにHの量を推
 定する.

- ・数keV領域の中性子が少ないスペクト ルを本研究は主張する.
- この主張を確かめるために,ポリエチレン
 Shieldを利用したセットアップを用いて,中性
 子スペクトルについてさらに詳しく調べたい.

Counts /1M events	0.025eV	1eV	1keV	1MeV
Poly+B	9	2498	15330	34290
+Shield	3	5	182	8494
 各エネノ	レギーでの「	中性子校	食出数(相	封値)

検出器応答シミュレーション

- 前頁のスペクトルでシミュレー
 ションを行い,検出器の応答を
 調べる.
- フラックスと検出数の
 変換係数を導出する.

減速材ありセットアップ

- ・より高エネルギーの中性子測定の 効率 ³Heのみ 減速材あり ために減速材と吸収材を使用する.
- 結果の解釈にはスペクトルの形が 必要.

岩石組成測定

- Lab-Bの岩石(Sample I-3)を測定した.
- 主要元素の割合をXRFで,U/Thの含 有量をGe検出器とGeant4による効 率見積もりで算出した.

sample2

539

1304

sample1

591

1408

ppb

U chain

Th chain

(wt. %)	sample1	sample2	sample3
0	40.5	37.9	35.6
Ca	28.0	24.3	29.7
Si	16.6	15.6	12.0
Fe	7.6	16.6	13.5
AI	5.2	0.3	0.1
Mn	0.8	3.5	2.9
	その他主要	要15元素	を測定した

- 水素の量の測定は難しいが,水素は
 中性子減速に非常に重要である.
- ・今回は岩石に水素が3%含まれてい るという仮定で議論する.

<u>YMAP秋の研究会 2017.10.17</u>水越彗太 (大阪大学)

sample3

585

1420

NeuCBOT

- TALYS ← general nuclear reaction program
 - ENSDF ← nuclear decay info
 - SRIM ← stopping power info

Wall thickness

• Im wall is enough for Neutron transport simulation

counts /100k n	Sample1	+H1%	+H2%	+H3%	+H4%	+H5%	+H6%
Only He	1963	3680	4254	4641	4752	4872	4995
Poly+B	1876	1739	1771	1553	1613	1637	1476

- ・水素を増やせば熱領域が多くなり,実験値に近づく.
- ・総量は+H6%で中性子フラックスは半分程度.

³He cross section

³He+n→³H+p 0.765 MeV

ミューオン由来中性子

Counts/10MeV 10⁵ 高エネルギー領域まで 10⁴ 10³ 発生しうる. 10² 9頁の図広範囲版 10 C 200 300 400 500 600 100 700 800 900 1000 Neutron Energy(MeV)

Analysis

- R.Taisyaku's works
 - Measuring environment neutrons in UG, yellow area is hidden by noise; only rad area events can be detected. He measured the ratio(Red:Yellow) using Cf.
 - Number of Events can convert to Number of Neutrons.

- 図 5.7: ²⁵²Cf 線源を用いて取得したエネルギースペクトル
- Using this ratio and the factor to flux, **total neutron** flux can be gained.
- Thermal and other neutron flux are given by total spectrum

Standard rock map

 Concerning the JZn-1 component

(wt. %)	sample1	sample2	sample3
0	40.5	37.9	35.6
Ca	28.0	24.3	29.7
Si	16.6	15.6	12.0
Fe	7.6	16.6	13.5
AI	5.2	0.3	0.1
Ti	0.2	0.0	0.0
Mn	0.8	3.5	2.9
Mg	0.6	1.1	0.7
Na	0.0	0.2	0.0
K	0.0	0.1	0.0
Ρ	0.2	0.0	0.0
S	0.0	0.1	1.2
Zn	0.0	0.1	4.3
Sr	0.1	0.0	0.0
Nb	0.0	0.0	0.0
Sn	0.1	0.0	0.0
Pb	0.0	0.0	0.0