宇宙線ミュオン多点観測における ラドン変換を用いた3次元トモグラフィの 実現可能性の検討

長原翔伍 東京大学 地震研究所

2017年10月16日(月),宇宙線研究所

目次

- 1. はじめに ミュオンラジオグラフィの原理とこれまでの成果
- 2. ラドン変換を用いた3次元密度再構成
- 3. シミュレーションによる3次元密度再構成の性能評価
- 4. まとめと今後の課題

目次

2. ラドン変換を用いた3次元密度再構成

3. シミュレーションによる3次元密度再構成の性能評価

4. まとめと今後の課題

ミュオグラフィとその原理

・横から見た密度分布が測れる。
・1つの観測装置で観測ができる。

宇宙線ミュオンを用いた火山観測: 時間分解技術の発展

静止画像 (2007,2008)

3日おきのコマ撮り(2014)

ストロボ撮影重ね合わせ (2015)

大室山単成火山(スコリア丘) @静岡県伊東市

単成火山: 一回の噴火で生成された火山

スコリア丘:

スコリア(※)が放出され、火口の 周りに積もって崖錐斜面をつくり、 円錐台形の山を成したもの

※マグマが吹き上げられて飛散冷 却してできる岩塊。多孔質。

北西上空からの写真 (ref. 岩波「科学」2016-11)

選ばれた理由:

- 小ぶり: 山体厚み < 1km
- 山麓に障害物がなく、車道が整備されていてアクセスが非常に楽
- スコリア単成火山でのミュオンラジオグラフィはまだ例がない(昭和新山は溶岩ドーム)
 →火山の形成過程を理解する上でその構造を理解することは重要

目次

2. ラドン変換を用いた3次元密度再構成

シミュレーションによる3次元密度再構成の性能評価 まとめと今後の課題

ラドン変換による解析手法の特徴

		従来の解析手法 Tanaka et al.(2010)	ラドン変換による 新しい解析手法
計算方法		Inversion計算	Forward計算
計算時間		長い	短い
必要な観測点		最低で2点	対象を囲む 観測点が必要
先験情報	山の形	必要	不要
	不均質 の事前情報	利用 (未利用だと不安定)	不要

投影切断面定理と再構成計算

1. 観測点数が限られる →系統誤差の評価が必要
 2. 信号の統計量が少ない →偶然誤差 "

目次

2. ラドン変換を用いた3次元密度再構成

3. シミュレーションによる3次元密度再構成の性能評価

4. まとめと今後の課題

固定したパラメータ

・観測装置の角度分解能 → 2.3°(tan値:0.04)

・観測装置の開口角 → ±63.4° (tan値:±2.00)

- •画像の再構成の空間分解能 → 20m×20m×20m
- ・観測点 → 山頂中心半径700mの円周上、標高420m(クレーター下85m)

系統誤差と偶然誤差

16点観測、観測期間100日、10㎡、試行回数500、クレーター下55m

 $\delta \rho_{sys}(i_{cell})$:系統誤差 $\delta \rho(i_{cell}, j_{loop}) = \rho(i_{cell}, J_{loop}) - \rho(i_{cell}, Original)$ i_{cell} :再構成点インデックス J_{loop} :試行回数インデックス

16点観測、観測期間100日、10^m、500試行、(x,y,z)=(360,220,30) $\rightarrow \delta \rho(i_{cell}, j_{loop})$ のうち、 i_{cell} を固定、 j_{loop} をエントリーとしたもの

観測期間100日、総面積10㎡、試行回数500の例

大室山、偶然誤差と総ミュオン数の関係 総面積固定で観測点数を変えた場合

〇総面積
 ・・・全観測点の装置面積の合計
 〇総ミュオン数
 ・・・密度を計算した点を通る
 ミュオンパスの観測ミュオン数
 を合計したもの。

偶然誤差は、観測点数に よらず、再構成点を通る 総ミュオン数に依存する。

目次

2. ラドン変換を用いた3次元密度再構成

3. シミュレーションによる3次元密度再構成の性能評価

4. まとめと今後の課題

まとめ

- ミュオントモグラフィにラドン変換を適用
- 観測点数が限られている場合の密度再構成を実施
- 以下の条件で試行回数500のシミュレーションを実施 観測条件:総有効面積10㎡、照射時間100日 密度差0.5(g/c㎡)、幅100mの密度異常があった場合
- 系統誤差は観測点数を増やすことで軽減可能
- ・ 偶然誤差は、1点当たりの装置面積を小さくして点数を 増やしてもほとんど変わらない

→可能な限り多点で観測した方がよい

今後の課題

- 偶然誤差の影響のさらなる検討
 - ・総ミュオン数が増減した場合の検証
 ・チェッカーボード等、他の構造での検証
- 従来の逆問題解析との比較
- 観測点配置の影響
 - ・観測点が円軌道上にない場合