Latest Development of Nuclear Emulsion technology

名古屋大学 理学研究科素粒子宇宙物理学D1 森下 美沙希

Short history of Nuclear Emulsion

1896 Becquerel Discovery of radioactivity by observing blackened Photo film

1910 KINOSHITA Suekiti Detection of Alpha particle tracks by photographic film

1911 Reinganum Sketch Alpha particle track detected by photographic film

1915 KINOSHITA S.& IKEUTI H.

"The Track of the Alpha Particles in Sensitive Photographic Films."

Philosophical Magazine and Journal of Science Ser.6, Vol.29, No.171, pp.420-425 (1915)

1937 Marietta Blau et al.
Observation of Stars of Cosmic-ray
Interactions by ILFORD plate

1947 C.F. Powell et al.

Discovery of π meson

PLATE 1-5

Wratten 'Ordinary' Plate

KINOSHITA and IKEUTI (1915).

Development in Japan , the defeated country of 2nd world war Cosmic-ray + Nuclear emulsion

Beam & Tracking device for the poor researcher

1950~ Study of multi-particle production in Cosmic-ray Int. Balloon/Air Plane base experiments.

Emulsion Cloud Chamber (ECC)

"素粒子"の発見

THE DISCOVERY OF ELEMENTARY PARTICLES

光子	γ	X-ray geterator	Compton scattering	Wilson Cloud Chamber	ウィルソン霧箱
電子	e-	Discharge tube	Ratio of e/m	Fluorescent screen	蛍光板
陽電子	e+	Cosmic rays	Ratio of e/m	Wilson Cloud Chamber	ウィルソン霧箱
μ 粒子	μ+ μ-	Cosmic rays	Absence of radiation loss in passage through Pb. (Also decay at rest)	Wilson Cloud Chamber	ウィルソン霧箱
π 中間子	π+	Cosmic rays	π - μ decay at rest	Nuclear emulsion	原子核乾板
	π-	Cosmic rays	Nuclear interaction at rest	Nuclear emulsion	原子核乾板
	π^0	Accelerator	Decay into γ -rays	Counters	カウンター
v 中間フ	K ⁺	Cosmic rays	$K_{\pi 3}$ decay	Nuclear emulsion	原子核乾板
K 中間子	K-	Cosmic rays	Nuclear interaction at rest	Nuclear emulsion	原子核乾板
(ストレンジ粒子)	K^0	Cosmic rays	Decay into $\pi^+ + \pi^-$ in flight	Wilson Cloud Chamber	ウィルソン霧箱
中性子	n	Polonium plus Beryllium	Mass determination from elastic collisions	Ionisation chamber	電離箱
反陽子	$ar{p}$	Accelerator	e/m measurement plus detection of annihilation	Counters	カウンター(TOF)
反中性子	\bar{n}	Accelerator	Detection of annihilation	Counters	カウンター
1	Λ^0	Cosmic rays	Decay in flight into $p^+ + \pi^-$	Wilson Cloud Chamber	ウィルソン霧箱
ハイペロン	$\Lambda^{ar{0}}$	Accelerator	Decay in flight into $\bar{p} + \pi^+$	Nuclear emulsion	原子核乾板
(ストレンジ粒子)	Σ^+	Cosmic rays	Decay at rest	Nuclear emulsion	原子核乾板
	Σ-	Accelerator	Decay in flight into $\pi^- + n^0$	Diffusion chamber	拡散霧箱
	Σ^0	Accelerator	Decay in flight into $\Lambda^0 + \gamma$	Bubble chamber	泡箱
	Ξ-	Cosmic rays	Decay in flight into $\pi^- + \Lambda^0$	Wilson Cloud Chamber	ウィルソン霧箱
	Ξ0	Accelerators	Decay in flight into $\pi^0 + A^0$	Bubble chamber	泡箱
	Ω^-	Accelerators	Decay in flight into $\Xi^0 + \pi^-$	Bubble chamber	泡箱

Discoveries

1971 NIU Kiyoshi, Discovery of X (=Charm) Particle

 \leftrightarrow 1974 J/ ψ

1994 KEK/E176 Observation of Double Hyper Nucleus

2000 NIWA Kimio et al. Discovery of **V**τ

Fermilab E872 Donut (First event in 1998)

2015 CERN/LNGS CNGS1 OPERA (First event in 2010),

Discovery of Vτ appearance by Neutrino Oscillation

2016 MORISHIMA K. et al. ScanPyramids,
Discovery of new structure in Khufu Pyramid

Nuclear Emulsion Film: 100000m Fidutial Mass: 1250 Ton

Development of the Automated Nuclear Emulsion Read-out system

HTS: Current Main system

Nuclear Emulsion itself

 Photographic film lost markets by the Image digitizing storm . → No room in the company to develop and produce Nuclear Emulsion.

Good chance to retrieve Emulsion technology from Company to University.

 2010: Installation of emulsion gel production system in our lab with helps of retired engineers

Emulsion R&D

without commercial restrictions for best emulsion for specified experimental purpose

Nuclear Emulsion Gel Production Machine

Installed in Nagoya Univ.

R&D Machine

~1kg/lot

From 2010

Composed by a Maker Related to Fujifilm

First output: Emulsion with world record highest sensitivity

GD= 86.1 ± 4.7 $FD = 2.9 \pm 0.9$

100um

 $GD = 34.8 \pm 0.6$ $FD = 3.7 \pm 0.4$

Film used in **OPERA**

First output: Emulsion with 35nm diameter crystal for Dark Matter directional detection

Kr: 200keV 200nm

Electron microscope

Kr: 400keV

500nm

Crystal Size Control

Nano Imaging Tracker (NIT) Type

Directional Dark Matter detection Neutrino Coherent Scattering

Down to 20nm

OPERA Type

Up to 800nm

Neutrino exp, Radiography γ Telescope (GRAINE)

- Grain size 20nm ~ 800nm
- Sensitivity control by impurity doping & chemical treatment

Emulsion coating "technique"

Traditional method

1. Pour the gel

2. Spread the gel

3. Drying

Tuning the gel properties

- viscosity
- surface tension

Tuning and controlling the drying condition

- humidity
- temperature
- wind

New method (under development) -> Easy and fast

1. Pour the gel

2. Spread the gel

3. Drying

	OPERA film	Traditional	New
Flatness (/100cm²) (1s)	<1µm	5μm	<2μm

Film Mass Production @ Nagoya

~7 m²/Week → ~300 m²/Year at Present ~1000m²/Year within a year ~10000m²/Year within 5 years

Drying

Temp. 30°C R.H. 70-80%

Current Projects

- GRAINE: Balloon-borne Large aperture & High precision γ-ray telescope → Next Speaker
- NINJA: Precise study of low energy Neutrino interactions @JPARC
- SHiP: Search for Hidden Particles/ Study of Tau Neutrino interactions. Beam dump exp.@CERN
- DsTau: Study on Tau neutrino production in 400GeV proton int. Compact exp.@CERN
- NEWSdm: Directional Dark Matter search @LNGS
- Muons: Cosmic-ray Muon radiography

GRAINE project

Precise observation of high-energy gamma-rays

Exploring extreme universe by balloon-borne emulsion telescope

Gamma-Ray Astro-Imager with Nuclear Emulsion

PI: S. Aoki (Kobe Univ). Aichi Univ of Education, ISAS/JAXA, Kobe Univ, Nagoya Univ, Okayama Univ of Science

NINJA Experiment

SP: FUKUDA T.

Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator

2018-2021

Study of Low energy ν Int.

- u —Water int.
 with recoil proton detection
- Measurement of $\,
 u$ e content

2023- Search for Sterile u

Emulsion 40m²(- 2018) 650m²(2019 -21) 650m²(2023-)

Multi-track vertex event search

1021 vtx candidate events

Japan Group SP: KOMATSU M.

SHiP experiment @ CERN SPS

Look for new physics in intensity frontier

Explore hidden portals

of the SM

using $> 2 \times 10^{20}$ p.o.t.

Coupling to >10¹⁷ Charm,

 $>10^{15} \tau$, $>10^{13}$ Beauty decays.

Hidden Sector decay volume

Target/ hadron absorber

Active muon shield

Rich v_{τ} /anti v_{τ} content 3500 v_{τ} interactions with 6 tons OPERA like target.

400GeV Proton Beam Dump exp.

SHiP neutrino detector

ECC + Emulsion

Emulsion ~3000m²

- P meas. up to 20GeV/c @ 1T
- Sign determination for ve/anti- ve

 $8k v_{\tau}$ /anti v_{τ} 280k ve/ anti ve 500k v_{u} / anti v_{u}

OPERA Muon system

DsTau

Precise v_{τ} Flux evaluation for future v_{τ} experiments

Nagoya, Kyushu, Kobe, Aichi, Bern, Bucharest, Ankara, Dubna
LOI (SPSC-I-245), Proposal (SPSC-P-354)
Beam exposure planning in 2018 and in 2021.

- v_{τ} cross section measured by DONUT with large uncertainty(~50%) on v_{τ} flux at beam source.
- Reduction of the uncertainty by measuring $D_s \rightarrow \tau \rightarrow X$ in high energy proton interactions

SP: ARIGA T.

Observable of the experiment

D_s production x decay branching ratio

$$\frac{N_{v_{\tau}}^{beam}}{N_{pot}} = \frac{2 \times \sigma(pW \to D_s X) \times BR(D_s \to v_{\tau} \tau)}{\sigma(pW)}$$

With collecting **1000** detected Ds $\rightarrow \tau$

- Angular distribution of $D_s \rightarrow \tau$ events
- \rightarrow Energy distribution \rightarrow x_F dependence

Systematic uncertainties	DONUT	With DsTau
D _s differential cross section (x _F dependence)	~0.5	0.1
Charm production cross section	0.17	١
Decay branching ratio	0.23	0.03
Target atomic mass effects (A dependence)	0.14	26

Module structure for $D_s \rightarrow \tau \rightarrow X$ measurement (current baseline)

- 0.05 λ_{int} in 10 units tungsten \rightarrow 4.6x10⁹ pot needed to get 2.3x10⁸ proton int.
- Track density in emulsion: keep <10⁵ tracks/cm² at the upstream side
- To expose 4.6x10⁹ pot → detector surface 4.6m² (368 modules)

10 units (total 100 emulsion films)

ECC for momentum measurement (26 emulsion films interleaved with 1 mm thick lead plates)

Emulsion ~500m²

Directional WIMP detection by Nuclear Emulsion NEWSdm @LNGS Japan Group SP: NAKA T.

Japan – Italy- Russia- Turkey –Korea Collaboration

Dark Matter Wind

WIMPS

Earth

230km/sec

 $V_{\text{recoil}} = 2 \left(V_{\text{sun}} + V_{\text{WIMP}} \right)$

 $= 100 \sim 1000 \text{km/sec}$

- Detect the direction of recoil atoms
 - → Dark Matter Telescope
- Easy to realize Ton scale detector

NEWSdm in Gran Sasso underground laboratory, Italy 2017

Nuclear Emulsion: a kind of Photographic film

Photographic Film:

Young people has no experience to use photographic film. Then they believe

This is true!

- "." Nuclear emulsion is
 - Three dimensional device.
 - Nano tech. device operating ~10nm size crystals
 - Ultimate energy saving device. No electric-power needed
 - Compact & Flexible device produced by only painting/pouring.
 - The Read-out system is an incarnation of Digital technology treating three-dimensional Images; the field of AI R&D.

Summary

Nuclear Emulsion

has a long History from 1910, is contributing to elementary particle physics until today

Still Alive, continue the contribution to the future science.

 Using emulsion, even students can be a Project Spokesman with their (good) ideas.

Low cost & Almost every thing is in your hand.

probably one of the best detector to cover the burnt field remained after the decline of the energy frontier dinosaur.