物理学会2021年秋季大会 9月17日 オンライン大会

超新星背景ニュートリノの理論予言

堀内 俊作

The Center for Neutrino Physics

Office of Science

Image credit: NASA/ESA

Distance scales and physics outcomes

	Galactic burst	Mini-bursts	Diffuse signal
Physics reach	Explosion mechanism, progenitor properties, multi-messenger astronomy, neutrino physics	supernova variety	Average emission Multi-populations (e.g., black holes) Multi explosion mechanisms Neutrino physics

Necessary ingredients

Stars explode EVERYDAY

✤ In the LMC

SN 1987A

ullet But in the universe, supernovae are not rare

1801.06643

Cosmic core-collapse rate

Direct measurements Improving quickly!

Note, two strategies:

- Efficient but Biased: target pre-selected galaxies, e.g., LOSS, STRESS
- Unbiased but harder: target pre-selected fields, e.g., SNLS, HST-ACS, DES, ...

Future measurements coming up (ASAS-SN, DES, LSST)

e.g., Lien & Fields (2009)

Updated from Horiuchi et al (2011)

Cosmic birth rate of stars

Useful comparison point:

Horiuchi & Beacom (2010) Madau & Dickinson (2014)

Cosmic comparison

Correct for especially heavy attenuation by dust (filled symbols)

Updated from Horiuchi et al (2011) Graur et al (2015)

Examples of cosmic cross checks

Integrated cross checks

Integrated cross checks

Necessary ingredients

Cross sections, detector capabilities

Neutrino emission

Much progress on numerical studies of core-collapse neutrino emission

- Three-dimensional simulations
- Input microphysics
- Systematic code comparison
- Oscillation likely get averaged out to MSW
 Lunardini & Tamborra (2012)

O'Connor et al (2018)

However, there are some unique challenges for the DSNB:

- 1. What is the long-term time-integrated neutrino emission?
- 2. What is the diversity in neutrino emissions?
- 3. How to account for collapse to black holes?
- 4. How to account for stellar binary effects?

1. long-term simulations

Growing availability: Long-term (~10 sec) simulations are feasible by switching from hydro to cooling after shock expansion

With 1D hydro, systematic sample

With 3D hydro, single progenitor

Nakazato et al (2013)

Bollig et al (2021)

Other long-term simulations, e.g.: Fischer et al (2009), Hudepohl et al (2010), Nakamura et al (2016), Suwa et al (2019), Sumiyoshi et al (2019), Li et al (2020), Nagakura et al (2021), Nakazato et al (2021)

Shunsaku Horiuchi

13

2. Diversity in neutrino emission

Strong variations: neutrino light curve reflects the progenitor's density profile

1D simulations

2D simulations

O'Connor & Ott (2013)

Based on Nakamura et al (2015)

3. Account for collapse to black holes

Collapse to black holes

Neutrinos from collapse to black hole

Black hole formation goes through high mass accretion

 \rightarrow v emission is more luminous and hotter (depends strongly on EOS)

Liebendoerfer et al 2004

Studied by many groups, e.g., Fischer et al, Sumiyoshi et al, Nakazato et al, Ott et al, O'Connor et al, Kuroda et al.

Shunsaku Horiuchi

Time-integrated neutrino emission

Systematic dependence on progenitor

Based on 100+ simulations (2D) of *Nakamura et al 2015,* 18 simulations (2D) of *Summa et al 2016,* and multiple BH simulations (1D).

Collapse to neutron stars

Collapse to black holes

Horiuchi et al (2018)

Which stars collapse to black holes?

The expectation circa 2000:

Qualitative expectations, no binaries, no rotation, metal-driven mass loss only

Which stars collapse to black holes?

Emerging picture:

Thinking in mass looks incomplete. Trends are deeply connected to progenitor.

Janka 2017; see also O'Connot & Ott (2011), Ugliano et al (2012), Horiuchi et al (2014), Pejcha & Thompson (2015), Shunsaku Horiuchi Nakamura et al (2015), Ertl et al (2016), Sukhbold et al (2016), Mueller et al (2016), Kresse et al (2021) 19

How many black holes?

Growing evidence for a large fraction (~20%) of implosions

+ supernova remnants, nebular spectra

See, eg, Jennings et al (2012, 2014); also Diaz-Rodriguez et al (2018), but Auchtettl et al (2019) Also, Valenti et al (2016), Jerkstrand et al (2015)

Looking for explosions

Smartt, STScl Spring Symposium (2019)

Looking for implosions

Look for <u>disappearance</u> of stars

Monitor ~27 galaxies

- \rightarrow Survey ~10⁶ red supergiants
- \rightarrow Expect ~1 core collapse /yr
- → In 10 years, sensitive to 20 30% failed fraction at 90% CL

Kochanek et al. (2008)

In 11 years running,

- ✓ 9 luminous CC supernovae
- ✓ 2 implosion candidates
 - NGC6946-BH1: SED well fit by ~25 Msun RSG
 - M101-OC1: follow-up ongoing

Neustadt et al (2021)

Also: Gerke et al(2015), Adams et al (2017), Reynolds et al (2016)

The emerging picture

Impacts on diffuse supernova neutrinos

- Collapse to black holes \rightarrow larger high-energy flux \rightarrow more events
- Increase is about $\sim 15\%$ (for 17% BH fraction) but can be higher
- Depends on EOS, metallicity, neutrino hierarchy

4. Binary effects

The majority of massive stars evolve in binaries

Shunsaku Horiuchi

Sana et al (2012)

Binary outcomes

Binary effects: supernova progenitors

Effect 1: binary effect increases number of supernova progenitors

	M	erger	Non-r	merger	Ratio wrt			
		(Rotation)	Double	Single	no binary, f_b			
No binary evolution	0	0	122,600	171,002	1			
Binary $\alpha \lambda = 0.1$ Extrapolated	155,235	315,722	75,723	109,276	1.76			
Binary $\alpha \lambda = 0.1$ Fiducial	155,235	50,102	75,723	109,276	1.24			
Binary $\alpha \lambda = 0.1$ No rotation	155,235	0	75,723	109,276	1.00			
Binary $\alpha \lambda = 1$ Extrapolated	140,467	196,983	83,070	131,679	1.53			
Binary $\alpha \lambda = 1$ Fiducial	140,467	39,869	83,070	131,679	1.24			
Binary $\alpha \lambda = 1$ No rotation	140,467	0	83,070	131,679	1.05			
Horiuchi et al (2021)								
	The inc	The increase depends on the treatment of post-						
**Note: $\alpha\lambda$ are common	merger rotation							
envelop modeling	• In our fiducial model 25% increase							
narameters		• In our fiducial model, ~25% increase						
parameters	•	• Up to +75%						

(Note: Kresse et al 2021 reports reduction but neglects mass gain and mergers)

Binary effects: supernova progenitors

Effect 2: binary effect creates very massive cores for collapse

Many more high CO mass progenitors due to mass transfer & mergers

Horiuchi et al (2021)

Impacts on diffuse supernova neutrinos

More realistic binary treatment leads to improved detection prospects

	SK-Gd [/yr]		HK [/yr]	
	Normal	Inverted	Normal	Inverted
No binary evolution	2.3	2.4	5.5	6.2
Binary $\alpha \lambda = 0.1$ Extrapolated	4.7	4.6	11.4	12.0
Binary $\alpha \lambda = 0.1$ Fiducial	2.7	2.7	6.4	7.1
Binary $\alpha \lambda = 0.1$ No rotation	2.3	2.4	5.5	6.2
Binary $\alpha \lambda = 1$ Extrapolated	3.8	3.8	9.1	9.9
Binary $\alpha \lambda = 1$ Fiducial	2.7	2.7	6.3	7.0
Binary $\alpha \lambda = 1$ No rotation	2.3	2.5	5.5	6.4

Fiducial model: ~20% increase

**Important: black hole contributions are not included here, real rates can be even higher

Horiuchi et al (2021)

Concluding remarks

<u>Summary</u>: the diffuse supernova neutrino background is *guaranteed*

- We know core collapse occur frequently (direct observations + cross checks)
- ✓ We know core collapses must emit neutrinos (SN1987A + simulations)

→ Must look and find the diffuse signal!

Various predictions:

- ✓ Differences in: supernova rate star formation rate, dust
- ✓ Differences in: progenitor, simulations, black hole treatment, EOS, ...

Future connections:

- ✓ Star formation, stellar density, metallicity evolutions
- ✓ Long-term simulations, treatments of black holes
- Binary interactions

Thank you!

Shunsaku Horiuchi

Compactness: a progenitor indicator

Compactness:

Captures the density structure of the progenitor, which impacts mass accretion evolution

- Higher $\xi \rightarrow$ higher Mdot
- Lower $\xi \rightarrow$ lower Mdot

Compactness: BH formation

Compactness:

Captures the density structure of the progenitor, which impacts mass accretion evolution

O'Connor & Ott (2011)

- Higher $\xi \rightarrow$ higher Mdot \rightarrow BH forms earlier
- Lower $\xi \rightarrow$ lower Mdot \rightarrow BH formation takes longer

$$_{M} = \left. \frac{M/M_{\odot}}{R(M_{\text{bary}} = M)/1000 \,\text{km}} \right|_{t}$$

Shunsaku Horiuchi

Compactness: Explodability

... beyond black hole formation time...

Compactness does a crude first job separating failed vs explosions.

Is there a critical compactness?

- 1 compactness predicts at most ~88% of cases
- 2 parameters successful in ~97% of progenitors
- Critical $\xi_{2.5} \sim 0.2$ consistent with 2D simulations С
- TBD for 3D

- BH formation for $\xi_{2.5} > 0.3$
- Explosions for $\xi_{2.5} < 0.15$
- Mixture in between

Pejcha & Thompson (2015) Ertl et al (2016)

Horiuchi et al (2014)

Type II progenitors

DSNB: long-term future

Supernova rate uncertainty Will reduce with next-generation supernova surveys (e.g., LSST; 2023~)

Neutrino detector

Hyper-Kamiokande will increase detector volume by x10 or so

Core mass growth

- 1. Extrapolated: Simple extrapolation
- 2. Fiducial: Numerical modeling
- 3. No rotation: Ignoring core mass growth (very conservative)

