突発天体と可視光・赤外線観測

田中 雅臣 (東北大学)

Transient sky (optical/infrared)

LSST Science Book (after Rau+09, Kasliwal+,Kulkarni+)

Multimessenger from transients

GW	Asymmetric motion d ~ 10 kpc	Inspiral + merger d ~ 200 Mpc
Low E	Neutron star	Neutron star + disk
neutrino	d ~ 100 kpc	d ~ 100 kpc
High E neutrino	Jet/failed jet??	Jet?? 木村さん講演
EM	Decay of 56Ni + shock heating	Decay of r-process
(opt/IR)	d > 1 Gpc	d ~ 200 Mpc

Expectation Observed

Supernovae as high-E neutrino sources

Neutron star mergers as gravitational wave sources

Supernova with chocked jet as high-E neutrino source?

Observed as "broad-line" SNe? (~1 % of core-collapse SNe) (c.f. Long GRBs ~0.1 % of core-collapse SNe)

Can we detect SNe as a counterpart of high-E neutrino?

Can we search SNe in the localization area?

内海さん講演

Can we identify the counterpart? (contamination of unrelated objects)

Doublet (z~0.2, 22 mag) ~ 1 SNe / deg2 / 1 vist

- Feasible with current instruments

石原さん、清水さん講演

清水さん講演

Singlet (z ~ 1, 26 mag) ~50 SNe / deg² / 1 visit - Better localization with IceCube-Gen2 (< 1 deg)

- Spectroscopy with 30m-class telescopes (e.g., TMT)

Supernovae as high-E neutrino sources

Neutron star mergers as gravitational wave sources

Neutron star mergers

rapid neutron capture (r-process) t~1 sec Nuclear physics

(C) Nobuya Nishimura

"Kilonova" t ~ 1 day-month

Atomic physics

GW+EM observation => Ejected material and composition

Kilonova as a probe of nucleosynthesis

Less n-rich ==> "blue" kilonova More n-rich ==> "red" kilonova

MT, Kato, Gaigalas, Kawaguchi 2020

GW170817

Kawaguchi+2018, 2020

内海さん講演

Smoking gun: r-process nucleosynthesis by the NS merger

Element identification in kilonova spectra

Atomic physics

Lack of atomic data in infrared wavelengths (> 1 um) - Systematic atomic calculation (MT+2020, Banerjee+20) - Lab spectroscopy

Plasma modeling - non LTE model (Hotokezaka+21)

Plasma physics

More events, larger variety

森崎さん講演

GW190425 Mtot ~ 3.4 Msun

Abbott+2020

No EM observations covering the entire area... => Better localization with KAGRA

神田さん講演

Diversity of neutron star merger

Kawaguchi, Shibata, MT 2020

Toward complete census of neutron star mergers

GW => <u>Mass (initial condition</u>!) EM => physicsPand hucle<u>o</u>sýn<u>t</u>hasis in NS merger K-band

Summary

Supernovae as high-E neutrino sources

- Doublet events (z ~< 0.2): ideal test for SN scenario
- Singlet events:
 - Better localization (< 1 deg) => lceCube-Gen2
 - Higher EM sensitivity => TMT
- Neutron star mergers as GW sources
 - GW170817: r-process nucleosynthesis
 - More events, larger variety
 - Better localization => KAGRA
 - Complete understanding of nucleosynthesis