

IceCube実験による これからの宇宙ニュートリノ即時同定

清水信宏 千葉大学 理学研究院

17aW1-5 日本物理学会 2021年 秋大会 シンポジウム 「ニュートリノ・重力波時代のマルチメッセンジャー観測の展望」

Neutrinos as messenger

2

J. Phys. G 48, 6, 060501 (2021).

Neutrinos from burst object

Neutrinos accompanies with various partners

Multi-messenger astronomy to understand the mechanism of astrophysical objects

IceCube experiment

Neutrino telescope operated in Antarctica

- 5160 optical modules are deployed in ice 1 km ${}^{\circ}$
- Cherenkov light from charged particles produced by neutrino interaction is detected by DOM

Neutrino detection in IceCube

 σ increases as the energy of ν increases (very roughly) $\sigma \propto \sim E^{0.5}$ Astrophysical neutrino flux $\propto E^{-2.3}$

→ This cancellation provides wide range of physics programs

 10^{-39} - 10^{-38}

Cherenkov photons from charged particles are detected by sensitive photo detectors.

Event topologies and resolution

Neutrino alert

EHE-170922A

Science 361, eaat1378 (2018)

"EHE" alert

An alert issued when an "extremely high energy" event is observed. Chiba University lead this development.

Event observed at 23nd Sept 2017 5:54:30 JST \rightarrow Issued an alert 43 seconds later

Kanata Telescope followed up it and found a "*blazer*" TXS 0506+056 showed an increase of luminosity. Fermi/MAGIC confirmed an increase of γ ray activity as well.

Optical alert using "multiplet" signal

Multiplet signal

Issue a public alert to optical telescopes when IceCube observes $N \ge 2$ coincident signals (multiplet) in the limited timing window ΔT , and opening angle $\Delta \psi$.

Detection efficiency
$$\propto \frac{A}{4\pi d^2}$$

Prob. detected as Singlet $\propto d^{-2}$ Prob. detected as Multiplet $\propto d^{-2N}$

Multiplet signal picks up neutrinos from nearby objects

= Useful for optical follow up

Why multiplet?

11

Wide field of view & large depth mean large BGs

With magnitude brighter than 26 ($z \sim 1$, d=7 Gpc), rate/density of SNe = $\frac{\mathcal{O}(10) SNe}{\deg^2 \cdot 20 \text{ days}}$ \rightarrow Too many optical counterparts in the distant universe!

Even if we observe a true astrophysical neutrino signal and found a transient source, chance coincidence of SNe degrades the significance.

To claim a significance large enough, we focus only on close objects $z \ll 1$.

Strategy to identify ν source

To achieve large significance, we choose the closest object in field of view.

Red Shift

Field of view (FoV)

p.d.f of z for a neutrino source: $S(z) = \frac{1}{N_2} \frac{dN_2}{dz}$ *p.d.f* of *z* for a chance coincidence: $B(z) = M\rho_{SN}(z) \left[1 - \int_0^z \rho_{SN}(z')dz'\right]^{r_*}$ z density of supernovae chance coincidence ν source 100 $\frac{\rho_{SN}(z)}{Mnc^{-3}vr^{-1}} = \begin{cases} 1.3 \times 10^{-4} & d > 100 \text{ Mpc} \\ \text{from Catalog } d < 100 \text{ Mpc} \end{cases}$ Neutrino Multiplet Sources 1.000 e+49 erg 3.0000e-06 /Mpc3Yr Supernova 1.2999e-04 /Mpc3 y 10-2 Prob. density Difference in z distribution \rightarrow The tendency of z distribution may 10-6 reveal new type of neutrino sources. $FoV=1 deg^2$ 10-8 0.4 0.0 0.1 0.2 0.3 0.5 0.6

Current scheme and target sensitivity

	Current prog	New scheme		
Alert type	Private		→	Public
Timing window ΔT	100 s			30 days

TABLE I. Characteristic parameters of the candidate sources of UHECRs and high-energy neutrinos. PRD 102, 083023 (2020)

	HL GRB	LL GRB	Newborn magnetar	Jetted TDEs	Blazar Flares	Jetted AGN
$L_{\gamma} [\text{erg s}^{-1}]$	10^{51-53}	1046-48	10^{42-44}	10^{45-48}	10^{45-48}	10^{43-48}
Г	100-1000	2-30	?	3-100	3-100	3-100
$\rho [\text{Gpc}^{-3} \text{yr}^{-1}]$	0.1-1	100-1000	1000-10000	0.01-0.1	100-1000	
ΔT [s]	10-1000	100-10000	10^{2-5}	10^{5-7}	10^{5-7}	

For $\Delta T = 30$ days, and the opening angle of $\psi = 1$ deg, how many events μ_{sig} can be followed up by optical telescopes?

1 year $\rightarrow O(1)$ event 30 days \rightarrow 12 trials $1 \times 1 \text{ deg}^2 \rightarrow 6500$ patches in the half sky

$$\mu_{sig} \sim \frac{1}{12 \times 6500} = 1 \times 10^{-5}$$

Target sensitivity is $\mu_{sig}{\sim}1{\times}10^{-5} \text{ in each observation.}$

Backgrounds at IceCube (track type) 14

Down-going events are suffered from large contamination from **muon**

Up-going type is relatively pure but still **muon** contribution is huge

Dedicated cuts on the track removes **muon** but **atmospheric** ν still remains.

Energy difference finally discriminates atmospheric ν and astrophysical ν

Energy distributions for up-going events

Consideration of backgrounds

How many BG events μ are practically allowed in 1 deg² for Δ T=30 days ?

1 deg² \rightarrow 6500 patches in the half sky $\Delta T=30$ days \rightarrow 12 trials/year

Poisson(n=2| μ)× 6500 × 12 = 1 event

Cumulative

By applying higher energy cut, we can accommodate the background level.

Consideration of Diffuse u_{μ} flux

"Diffuse ν_{μ} " \rightarrow not specified their source

 10^{5} 10^{4} 10^{3} 10^{2} 10^{1} 10^{0} 10^{-1} 1 1 1 1 1 1 1.4 1.2 -1.0 0.8 -0.6 ------ 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} Truncated Energy / GeV Astrophysical $(1.44 \times (E/E_0)^{-2.28})$ Conventional Atm. Prompt Atm. Sum

Exp. Data

PoS-ICRC2019-1017

→ Indirect limit of the parameter space in (L_{ν} , n_0) plane

Calculation of the # of multiplet signal 17

IceCube-Gen2

♦ Volume of Gen2 → x 8
♦ Sparse layout: 125 m → 240 m
♦ Install O(10,000) optical modules

Gen1 DOM

The sensitivity of Gen2 opens a new area of multi-messenger astronomy!

LOM

D-Egg

18

Summary and plan

- High energy neutrinos are one of the unique messengers of the deep universe
- To search for the origin of neutrino source, IceCube issues an alert to the world when it detects neutrino signal.
- To search for the real neutrino source while keeping the significance of observation, the signature of multiplet signal is very useful
- A program of a new multiplet is now being developed and (hopefully) expected to observe 1 events in a few years.

Types of neutrino alerts

□ Extremely high energy (EHE) alert

Optical Follow-up (OFU)

New era of multi-messenger astronomy **21** opened by IceCube-Gen2

Angular resolution improves by x 3

ааа

New optical module for Gen2

Figure of merit of optical modules \rightarrow sensitivity/cost of deployment Use a low noise elongated glass vessel.

- Already satisfies the requirement of Gen2!
- Sensitivity improves by x 2.8
- 300 DEggs will be installed as a phase1 of Gen2 (2027)

Now being produced 270 DEggs now Sep. 10th

LOM

- To improve sensitivity further, houses 18 four inch PMTs
- Adopt "gel pads" to efficiently lead photons to PMTs
- The development of the assembly of difficult structure is ongoing

Multi-messenger astronomy

Astrophysical events produce various types of "messengers"

Neutrinos less interacts with particles when they move through the space.

Follow-up observation

When a telescope observes a notable event, issue an alert to other telescopes and see what happens in that direction.

Neutrinos are believed to be one of the earliest "messenger".

Calculation of redshift distribution

How to find a neutrino source close to the earth?

Once we detect ν multiplet signal and issue an alert, we choose the smallest zobject as a astrophysical neutrino sources.

Effective area of

IceCube telescope

Field of view

Formalism (simplified)

Flux of neutrinos:
$$\phi(z) = \frac{dN}{dAdtdE} \propto \frac{1}{4\pi d^2} \frac{L}{E_v^{-\alpha}}$$
 (L = luminosity)

Averaged number of hit in ΔT from a single source: $\mu = \Delta T \int dE A_{eff}(E) \phi(z)$

$$\frac{dN(n=2)}{dz} = \int dz \text{ density}(z) \times \text{Poisson}(n=2|\mu)$$

$$p.d.f \text{ of } z \text{ parameter for multiplet candidate}$$

Backup

Comparison between the current scheme 27

	Current program	New scheme
Timing window	100 s	Up to O(week)
Philosophy of the optimization of sensitivity		Source-oriented and consider a scheme to select an object in FoV
Interaction type	Track + Track	Track + cascade Track + Track
Direction	Northern	Northern + expand to southern

TABLE I.	Characteristic parameters	of the candidate	sources of UHECRs an	d high-energy neutrinos.	PRD 102 , 083023 (2020)

	HL GRB	LL GRB	Newborn magnetar	Jetted TDEs	Blazar Flares	Jetted AGN
L_{γ} [erg s ⁻¹]	10^{51-53}	10^{46-48}	10 ⁴²⁻⁴⁴	10^{45-48}	10^{45-48}	10^{43-48}
Γ	100-1000	2-30	?	3-100	3-100	3-100
$\rho [{\rm Gpc}^{-3} {\rm yr}^{-1}]$	0.1-1	100-1000	1000-10000	0.01-0.1	100-1000	
ΔT [s]	10-1000	100-10000	10^{2-5}	10^{5-7}	10^{5-7}	

$$egin{aligned} \phi_{ ext{PS}} &= rac{dN}{dAdtdE} = rac{1}{4\pi r^2} (lpha-2) Ligg(rac{1}{\epsilon_0}igg)^2 igg[rac{E(1+z)}{\epsilon_0}igg]^{-lpha} \ \mu_{ ext{PS}} &= T\int dEA(E,\Omega) \phi_{ ext{PS}} \end{aligned}$$

$$N^{(n)} = \int dV P(n|\mu_{
m PS}) n_0 (1+z)^3 \psi(z),$$

$$dV=rac{r^2}{(1+z)^2}cdtd\Omega.$$

According to Friedmann model, the equation of motion of the scale factor is calculated to be

$$rac{dz}{dt} = H_0(1+z)\sqrt{\Omega_\Lambda + (1+z)^2\Omega_k + (1+z)^3\Omega_M}$$
 ,

where H_0 is Hubble parameter, Ω_{Λ} is the normalized cosmology constant, Ω_k is the normalized spatial curvature density, and Ω_M is the normalized matter density. The volume element is finally given as element over solid angle and redshift parameter:

$$dV=rac{r^2}{H_0(1+z)^3\sqrt{\Omega_\Lambda+(1+z)^2\Omega_k+(1+z)^3\Omega_M}}cdzd\Omega$$

Wide view optical telescopes

These days, many and many wide-field optical telescopes are available.

Tomo-e Gozen project

Started design operation April 2019. Cover 20 deg² at once. Sub-second /frame

Optimization of sensitivity

For a given flux of transit source of ν , $\phi(L_{\nu})$, the averaged number of events from the point source is

 $\mu_{PS} = T\Delta\Omega A \phi$ $\mu_{PS} = T\Delta\Omega A \phi$ $\Delta\Omega$: acceptable solid angle, A: Effective area

Then, the total number of sources, which can be observed as multiplet is

$$N^{multiplet}(L_{\nu}, n_0, T) = \Delta \Omega \int dV \, n_0 (1+z)^3 \, P(n=2|\mu=\mu_{PS})$$

where n_0 is a density of the transit sources.

BGs due to diffuse singlet sources and atmospheric muon, can be evaluated as $N^{BG}(L_{\nu}, n_0, T)$. For a given L_{ν}, n_0 , we maximize $N^{multiplet}/N^{BG}$.

	1			0 03) 000020 (2020	
	HL GRB	LL GRB	Newborn magnetar	Jetted TDEs	Blazar Flares	Jetted AGN
L_{γ} [erg s ⁻¹]	10^{51-53}	10 ⁴⁶⁻⁴⁸	10 ⁴²⁻⁴⁴	10^{45-48}	1045-48	10^{43-48}
Γ	100-1000	2-30	?	3-100	3-100	3-100
$\rho [{\rm Gpc}^{-3} {\rm yr}^{-1}]$	0.1-1	100-1000	1000 10000	0.01.0.1	100 - 1000	
ΔT [s]	-10-1000	100-10000	10^{2-5}	10^{5-7}	10^{5-7}	

TABLE I. Characteristic parameters of the candidate sources of UHECRs and high-energy neutrinos. PRD 102, 083023 (2020)

Field of view of various optical telescopes **31**

		^(deg²) ↓		T. Morokuma			
	tel [m]	FoV	area	cadence	depth	detector	note
PTF	1.2	7.3	8,000	5 days	R~20.6	CCD	Palomar 48" Law+2009
ZTF	1.2	47	数1,000?	a few hours	r~21	CCD	Palomar 48" 2018-
ASAS-SN	8 x 0.14	120	20,000	~1 day	~17	CCD	Haleakala & CTIO sites
CRTS	1.5+0.7+0.5	1.2+8.1+4.2	1,200	30 min (x4)	19-20	CCD	2 x USA + Australia
TESS	4 x 0.105	2300	2,300	27-day continuous	I~18	CCD	downlink ~2weeks
Evryscope	24 × 0.061	8000	8000?	2 min 1 day	V~16.5 V~19	CCD	CTIO site
KISS	1.05	4	100	1 hr	g~20-21	CCD	Kiso
Tomo-e	1.05	20	10,000	<mark>2 hrs</mark> 1 day	g~18 g~19	CMOS	Kiso

Field of view

https://www.nao.ac.jp/study/oao//pdf/reference/um/um16/O22_Morokuma.pdf

Various optical telescopes $\Delta \Omega > 1 \text{deg}^2$ are now available and even might be able to cover angular resolution of cascade.

Moreover, not necessary to have large aperture in this proposal.

N. Yasuda, et al, ApJS **71**, Issue 4, 74 (2019).

arXiv:2008.04323v

