高エネルギーニュートリノと重力波 で探る天体物理

東北大学 学際科学フロンティア研究所 日本学術振興会 特別研究員 (PD)

木村成生 (Shigeo S. Kimura)

日本物理学会 2021年秋季大会 シンポジウム ニュートリノ・重力波時代のマルチメッセンジャー天文学の展望

- ・連星中性子星合体
- ・連星ブラックホール合体
- ・まとめ

・連星超大質量ブラックホール合体

起源天体 宇宙線

2013年に初検出

高エネルギーニュートリノ

ハドロン宇宙線 石原さん・清水さん講演 リノ検出器 (IceCube)

すばる望遠鏡

可視光

- ・まとめ

・連星超大質量ブラックホール合体

• 最も有望なマルチメッセンジャー天体 インスパイラルから合体まで → 重力波 ・ 短いガンマ線バースト(SGRB): → 軟ガンマ線・ニュートリノ R過程元素の崩壊(キロノバ) → 可視赤外 噴出物質 (SGRB,キロノバ) と周囲の相互作用

→ 電波・可視赤外・X線・GeV-TeVガンマ線

マルチメッセンジャー信号の検出

- 初の重力波と電磁波のマルチメッセンジャー信号の検出
- ・ガンマ線:低光度SGRBという種別が存在する
- 可視赤外:キロノバと母銀河同定

→ 連星中性子星合体によりr過程元素が合成される

→ 連星中性子星合体により相対論的ジェットが放出される

GW170817で分かったこと

初の重力波と電磁波のマルチメッセンジャー信号の検出

9

- ・ガンマ線:低光度SGRBという種別が存在する
- 可視赤外:キロノバと母銀河同定

→ 連星中性子星合体によりr過程元素が合成される

→ 連星中性子星合体により相対論的ジェットが放出される

GW170817で分かったこと

ニュートリノは検出されなかった 今後の展望を議論することが重要

Kilonova ejecta

Shocked wind

wind

連星中性子星合体残骸 Gao et al. 2013; Fang & Metzger 2017; Decolene et al. 2020

log(L [erg/s]) SGRBの光度曲線

- 標準的な残光理論:前進衝撃波からのシンクロトロン放射
- ・ 速い時間変動、急激な減光 → 中心エンジンの長期活動+ジェットの内部散逸
- 長期活動のエネルギー~即時放射のエネルギー
- 散逸領域で陽子が同時に加速される→ニュートリノ放射

短いガンマ線バーストとエンジン長期活動

see e.g. Nakar 2007, Sakamoto et al. 2011, Kisaka et al. 2017

前進衝擊波

長期活動からの

13

ニュートリノ	/ 放射

NS–NS ($\Delta T = 10$ years)	IC (all)	Ger
EE-mod-dist-A	0.11-0.25	0.3
EE-mod-dist-B	0.16-0.35	0.4
EE-opt-dist-A	0.76–0.97	0.9
EE-opt-dist-B	0.65–0.93	0.9

- 重力波の検出限界距離内(300Mpc)の 合体事象からのニュートリノ検出率を計算
- 楽観的シナリオ

→lceCubeでも検出可能性が高い

- 控えめなシナリオ
 - →Gen2 があれば高い確率で検出可能

窒息ジェット

16

- ・ GRBの中心エンジンは濃い物質に囲まれている →ジェットが濃い物質を突き破らないと 観測されない
- ・ 星周物質を突き破るのに失敗した系: 窒息ジェット系
- ・ 観測的にも理論的にも、SGRBで 窒息ジェットができていそう

Matsumoto & SSK 2018

Moharana + 2017

collimation shock

> Internal shock

窒息ジェットからのニュートリノ

17

重力波対応ニュートリノの検出率

- ・ 300 Mpc以内の連星中性子合体事象に対して検出率を計算
- 楽観的シナリオならlceCubeでも数年で検出可能
- 標準的シナリオでもlceCube-Gen2をI0年運用すれば検出可能

SSK et al. 2018 PRD GW+neutrino detection rate $[yr^{-1}]$

model

 \boldsymbol{A} (Optimistic)

 \boldsymbol{B} (Moderate)

IceCube (up+hor+down) 0.380.024

- 300 Mpc以内の連星中性子合体事象に対して検出率を計算
- 楽観的シナリオならIceCubeでも数年で検出可能
- 標準的シナリオでもIceCube-Gen2をIO年運用すれば検出可能
- 窒息ジェット系ではジェットからの光子は 観測できない ニュートリノと重力波の観測が窒息ジェット 系での物理量に関する重要な情報を与える

GW+neutrino detection rate $[yr^{-1}]$ SSK et al. 2018 PRD

model A (Optimistic) **B** (Moderate)

IceCube (up+hor+down) 0.38 0.024

重力波対応ニュートリノの検出率

→ 40Mpcでも観測は難しい

Neutrinos from Remnants

22

T_{dur} ~ days to weeks 広角に放射

- ・ブラックホールモデル: v & γ 検出には弱すぎる
- - Gen2で検出可能性あり
 - TeVをmonthで検出可能

 - →GW170817では強い制限

・導入 ・連星中性子星合体 ・連星ブラックホール合体

- ・まとめ

・連星超大質量ブラックホール合体

GW190521と可視光突発天体

MJD

24

- 銀河中心にはNuclear Star Clusterが存在
- 活動銀河核には降着円盤が存在

- 星団と円盤が相互作用→BBH mergerを促進
- AGN円盤中でのBBH merger →合体後のBHが周囲の物質を降着 →明るい電磁波放射?

$$\begin{split} L_{\rm BHL} &\approx 2.5 \times 10^{45} \ {\rm erg s^{-1}} \left(\frac{\eta}{0.1}\right) \left(\frac{M_{\rm BBH}}{100 \ M_{\odot}}\right)^2 \\ &\times \left(\frac{v_k}{200 \ {\rm km \ s^{-1}}}\right)^{-3} \left(\frac{\rho}{10^{-10} \ {\rm g \ cm^{-3}}}\right), \end{split}$$

Graham et al. 2020

AGN-BBH mergerからの電磁波放射

SSK et al. 2021

- 超臨界降着なら円盤風が吹く →AGN円盤に穴を空ける →合体時には周囲にものはない
- Merger kickでAGN 円盤に突入 → bubbleの形成

→ 軟X線での突発天体

AGN-BBHからの電磁波・ニュートリノ

27

- Tagawa, SSK et al. in prep.
- Post merger BH は回転している →降着するとジェットを噴出 ジェシトのkinetic luminosityは大きい: $L_i \sim 10^{42} \text{ erg s}^{-1}$ $F_{\gamma} \rightarrow$ $erg/(s cm^2)$ 10 近傍のセイファートをガンマ線で検出 →ごのシステムを調べられるかもしれない AGN中の高密度星に関わる現象からの ニュートリノ放射も議論されている Zhu et al. 2021a,b; Wang et al. 2021; Perparet al. 2021 etc.

- ・まとめ

・連星超大質量ブラックホール合体

連星超大質量ブラックホール(連星SMBH)

ESA/Hubble/NASA

- 銀河はmergerを繰り返して成長する
- それぞれの銀河にSMBHがある
- → merge後には2つのSMBHが一つの銀河に存在
- SMBHはdynamical frictionで中心に沈んでいく
- → 連星SMBHの形成
- LISAでSMBHの合体はz~6まで検出できる
- 銀河合体はAGNの活動を励起
- → SMBH mergerのカウンターパートになり得る?

PeV - EeV のニュートリノを効率よく生成

- ・ 楽観的シナリオ:将来計画でPeV EeVの宇宙背景ニュートリノを検出可能

連星 SMBH 合体からのニュートリノ

Neutrino detection rate $\dot{N}_{\nu,i}$ for SMBH m

Optimistic parameters

$\dot{m} = 10, L_{k,j} \simeq 3.4 \times 10^{46} \text{ erg s}^{-1}, \epsilon_p = 0.5, h = 0.3$			$\dot{m} = 0.1, L_{k,j} \simeq$	$3.4 \times 10^{44} \text{ erg s}^{-1}$	$\epsilon_{p} = 0.5, \ h = 0.0$
IC (up + hor)	IC (down)	IC-Gen2 (up + hor)	IC $(up + hor)$	IC (down)	IC-Gen2 $(up + h)$
0.019	0.014	0.16	8.2×10^{-5}	4.3×10^{-5}	3.7×10^{-4}
9.1×10^{-4}	7.8×10^{-4}	4.2×10^{-3}	1.7×10^{-6}	1.3×10^{-6}	9.5×10^{-6}
2.6×10^{-3}	1.8×10^{-3}	0.013	9.6×10^{-5}	7.2×10^{-5}	4.1×10^{-4}
0.011	8.4×10^{-3}	0.044	3.5×10^{-4}	1.9×10^{-4}	2.1×10^{-3}

$\dot{m} = 10, L_{k,j} \simeq 3.4 \times 10^{46} \text{ erg s}^{-1}, \epsilon_p = 0.5, h = 0.3$			$\dot{m} = 0.1, L_{k,j} \simeq 3.4 \times 10^{44} \text{ erg s}^{-1}, \epsilon_p = 0.5, h = 0.0$			
Scenario	IC (up + hor)	IC (down)	IC-Gen2 (up + hor)	IC $(up + hor)$	IC (down)	IC-Gen2 (up + h
CS	0.019	0.014	0.16	8.2×10^{-5}	4.3×10^{-5}	3.7×10^{-4}
IS	9.1×10^{-4}	7.8×10^{-4}	4.2×10^{-3}	1.7×10^{-6}	1.3×10^{-6}	9.5×10^{-6}
FS	2.6×10^{-3}	1.8×10^{-3}	0.013	9.6×10^{-5}	7.2×10^{-5}	4.1×10^{-4}
RS	0.011	8.4×10^{-3}	0.044	3.5×10^{-4}	1.9×10^{-4}	2.1×10^{-3}

Collimation shock, z = 1

nergers within the LISA detection range $z \lesssim 6[yr^{-1}]$	
---	--

Conservative	parameters
--------------	------------

Yuan, Murase, SSK+ 2020

100 TeVのニュートリノ放射は1年ほど続く 楽観的な場合にはGen2で数年で検出可能 ・ 悲観的な場合にはGen2でも検出は難しい

・まとめ

まとめ

- 重力波とニュートリノを同時に出す天体候補を議論した
- NS-NS and NS-BHでは3つのニュートリノ放射領域があり、
 - 窒息ジェットでは~ I sec,
 - SGRBジェットの長期活動では~ 100-104 sec,
 - 合体残骸星雲では~ day-week の時間でPeV - EeV のニュートリノが放射される。
- 恒星質量のBH-BHではAGN円盤中での合体事象が注目を集 めている。AGNよりも明るい電磁波・ニュートリノ対応天 体が見える可能性はある。
- SMBHの合体時にも電磁波とニュートリノが出る。
 - IceCube-Gen2 + 楽観的パラメータなら

10年でニュートリノ検出

- 電磁波は控えめなパラメータでも十分検出可能

