LIGO-Virgo実験による重力波観測の 現状と将来

University of Wisconsin-Milwaukee

Image: Carl Knox, OzGrav-Swinburne University of Technology

LIGO-Virgoの検出器ネットワーク

2

LIGO-Virgoの観測

今日

GW150914 B. P. Abbott et al., Phys. Rev. Lett. **116**, no.6, 061102 (2016).

- 重力波の初検出
- ブラックホール連星の合体: $m_1 = 36^{+5}_{-4} M_{\odot}, m_2 = 29^{+4}_{-4} M_{\odot}.$

ブラックホール連星の合体のイメージ図

GW170817 B. P. Abbott et al., Phys. Rev. Lett. **119**, no.16, 161101 (2017).

- ・中性子星連星の合体: $m_1 = 1.36 - 1.60 M_{\odot}, m_2 = 0.86 - 1.36 M_{\odot}.$
- ・電波−γ線の広い帯域での電磁波追観測
 →マルチメッセンジャー天文学の始まり

Time since gravitational-wave signal **Original Detection** Automated Vetting 1st Preliminary Classification || Alert Sent Rapid Sky Localization Cluster additional events **2nd Preliminary** Re-annotate 📕 Alert Sent Parameter Estimation **Initial Alert or** Human Vetting **Retraction Sent** Classification Parameter Estimation Update Classification Alert Sent 10 second 1 minute 1 hour 1 day 1 week 図:重力波速報のタイムライン

03からは、重力波検出後、数十秒以内に、 位置・重力波源のカテゴリーの情報が 追観測グループに報告された。

図:GW190425の推定位置

BNS	>99%	6
Terrestrial	<1%	
NSBH	0%	
MassGap	0%	
BBH	0%	BNS=中性子星連星 NSBH=中性子星-ブラックホール BBH=ブラックホール連星

図:GW190425のカテゴリー 6

連星合体の検出数

- 03では週に~1イベントの頻度
- 論文で報告されているのは、
 O3aまでの全55イベント +
 O3bの2イベント

R. Abbott et al., Phys. Rev. X **11**, 021053 (2021).
R. Abbott et al., arXiv:2108.01045 (2021).
R. Abbott et al., Astrophys. J. Lett. **915**, no.1, L5 (2021).

- 51イベントが *m*₁,*m*₂ > 3*M*₀を 満たすブラックホール連星
- O3bイベントを報告する論文は 近日公開

01,02で検出されたイベントと03のアラートの累積数

GW190412 R. Abbott et al., Phys. Rev. D 102, no. 4, 043015 (2020).

- 質量比の大きいブラックホール連星の初検出: $m_1 = 30.1^{+4.6}_{-5.3} M_{\odot}, \ m_2 = 8.3^{+1.6}_{-0.9} M_{\odot}.$
- 軌道周波数の3倍の高次モードが検出(p~6×10⁻⁴)

 $p(\beta)$

2.5

8

GW190814 R. Abbott et al., Astrophys. J. Lett. 896, no.2, L44 (2020).

- ・質量比が大きい連星: $m_1 = 23.2^{+1.1}_{-1.0} M_{\odot}, m_2 = 2.59^{+0.08}_{-0.09} M_{\odot}.$
- 伴星はこれまでに発見された中で 最も重い中性子星 か 最も軽いブラックホール
- GW170817から推定される 自転していない中性子星の最大質量は M_{max} ≤ 2.43M_☉ (at 90%)

• 電磁波対応天体は見つかっていない。

GW190521 R. Abbott et al., Phys. Rev. Lett. 125, no.10, 101102 (2020), R. Abbott et al., Astrophys. J. Lett. 900, no.1, L13 (2020).

図:親星の質量に対する残骸の質量

Mass gap

200

300

300

Metallicity

 $- \cdot - 2 \times 10^{-2} - 10^{-3}$

- 最も重いブラックホール連星: $m_1 = 85^{+21}_{-14}M_{\odot}$, $m_2 = 66^{+17}_{-18}M_{\odot}$.
- 主星の質量*m*₁は対不安定型超新星爆発の質量ギャップ領域(65 120*M*_☉)に入る。
- 合体後は中間質量ブラックホール: $M_f = 142^{+28}_{-16} M_{\odot}$.

連星ブラックホールの質量分布

• *m*₁,*m*₂ > 3*M*_☉を満たす44イベントを解析(GW190814は除外)

R. Abbott et al., Astrophys. J. Lett. 913, no.1, L7 (2021).

• 3つの重い (m₁ > 45M_☉)イベント: GW190521, GW190602_175927, GW190519_153544

図:LIGO-Virgo解析で用いられた質量分布モデル

連星ブラックホールの質量分布

TRUNCATEDモデルは観測と合わない。 ベイズファクターで10-80劣る。

GW190425 B. P. Abbott et al., Astrophys. J. Lett. **892**, no.1, L3 (2020).

- ・ GW170817以来の中性子星連星候補: $m_1 = 1.61 - 2.52M_{\odot}, m_2 = 1.12 - 1.68M_{\odot}.$
- LIGO-Hanfordは観測していなかった。
 → 位置ほぼ決まらず(全天の~16%)
- 電磁波・ニュートリノ対応天体は未発見
- 今まで見つかった(宇宙年齢以内に衝突する)
 中性子星連星の中で最も重い。

GW200105 & GW200115

R. Abbott et al., Astrophys. J. Lett. **915**, no.1, L5 (2021).

	m_1	m_2	
GW200105	$8.9^{+1.2}_{-1.5}M_{\odot}$	$1.9^{+0.3}_{-0.2}M_{\odot}$	
GW200115	$5.7^{+1.8}_{-2.1}M_{\odot}$	$1.5^{+0.7}_{-0.3}M_{\odot}$	
全て 90% 信頼区間		Ţ	
	中性子星の質量レンジ		

- 中性子星 ブラックホールと質量が無矛盾 な信号の初検出
- ・伴星が中性子星である直接的証拠(電磁波 対応天体・潮汐変形)は検出されなかった。

GW200105 & GW200115

Event-basedの合体率

- GW200105とGW200115のみを考慮
- 12-120 Gpc⁻³yr⁻¹

Broad populationの合体率

- ・中性子星-ブラックホールの質量レンジに入る全てのイベント候補を考慮 (m₁ ∈ [2.5, 40]M_☉, m₂ ∈ [1,3]M_☉)
- 61-242 Gpc⁻³yr⁻¹

GW200105 & GW200115

R. Abbott et al., Astrophys. J. Lett. **915**, no.1, L5 (2021).

LIGO MAGAZINE

First Neutron Star - Black Hole Mergers p.6

Science Summary Translations

Explaining our science to more people p.18

Completing the trilogy: GW200105 and GW200115

Detecting the signals

At the time of GW200105, the LIGO Hanford detector was offline and only the LIGO Livingston detector observed a signal with a signal-to-noise ratio above the threshold of detection. GW200115, on the other hand, was seen by both LIGO Hanford and LIGO Livingston. For both events, the signal-tonoise ratio recorded by the Virgo detector didn't meet the detection threshold.

When we make any detection, we estimate how confident it is. We compute the statistical significance of a detection by working out the possibility that noise could randomly produce the same signal by chance. We consider GW200115 to be an astro-

and enjoys some beers and cheese curds.

> Leo Tsukada is a postdoctoral researcher

at the Pennsylvania State University. He likes workout and hiking as well as enjoying sci-fi movies on Netflix on weekends.

Soichiro Morisaki is a postdoctoral researcher at the University of Wisconsin-Milwaukee. In his free time, he visits breweries

spin of a black hole. We found the black hole spin for GW200105 could lie between 0 and as high as 30% of the maximum rotation rate of black holes, while for GW200115, the spin lies between 0 and 80% of the maximum rate. For GW200115, the black hole spin is likely to have a negative spin projection. This means it is spinning in the opposite sense to orbital rotation of the binary system, which is guite unusual if it is the case. We do not have strong evidence of neutron star spin because our measure-

Black holes can spin, and measuring the

rate and orientation of the spins can help

us piece together how the binaries are

formed. There is a theoretical maximum

LIGO magazineは https://www.ligo.org/magazine/にて無料公開

OBSERVING PLANS AND PUBLIC ALERTS

LIGO, VIRGO AND KAGRA OBSERVING RUN PLANS

[16 July 2021 update; next update by 15 September 2021]

The LIGO-Virgo-KAGRA collaborations are making good progress in the updates of the Virgo (where installation of new hardware is complete), KAGRA, and LIGO detectors in preparation for O4. It is not yet possible to give a definitive start date for O4, as there are some continued supply chain delays and the impact of COVID continues. We can say at this time that the O4 observing run will not begin before August 2022. We expect to be able to give a better estimate for the start of O4 by 15 September 2021 and will issue an update then.

- 03からは重力波の速報が行われるようになった。
- 03でいくつか面白いイベントが検出された。
 - 質量比の大きいブラックホール連星
 - 中性子星とブラックホールの境界の質量を持つコンパクト天体
 - 対不安定型超新星爆発の質量ギャップ領域(65 120M_☉)に入る重いブラックホール連星
 - 中性子星-ブラックホール連星
- 連星ブラックホールの質量分布は~30 40M_☉に構造を持つ。
- 今後の展望
 - 連星ブラックホールの質量・スピン分布
 - 中性子星 ブラックホール連星の電磁波対応天体
 - 超新星爆発からのバースト重力波
 - 回転する中性子星からの連続的重力波
 - 連星合体信号の重ね合わせなどの背景重力波

Extra slides

連星ブラックホールのスピン分布

- 精度良く測れるスピン成分: $\chi_{eff} = \frac{(m_1 \vec{\chi}_1 + m_2 \vec{\chi}_2) \cdot \hat{L}_N}{m_1 + m_2}$ $\vec{\chi}_1, \vec{\chi}_2$: (無次元) スピン角運動量 \hat{L}_N :軌道角運動量方向の単位ベクトル
- 9イベントに対してχ_{eff} > 0 (at 95%)
 → 分布はχ_{eff} > 0によっている。
- 12%-44%はχ_{eff} < 0
 ダイナミカルに形成された連星?
- 異なる分布モデルを用いた解析では *χ*eff < 0 の集団の兆候は見つからなかった。
 J. Roulet et al., arXiv:2105.10580 (2021).

O4に向けたパラメター推定の高速化

図:重力波速報のタイムライン

- 重力波波形ベクトルの次元削減を用いた高速化
 → 中性子星連星の解析を~10⁴倍高速化 Morisaki and Raymond, Phys. Rev. D 102, 104020 (2020).
- 連星合体信号の周波数が単調増加することを利用して高速化

Morisaki , Phys. Rev. D 104, 044062 (2021).

連星合体 バースト重力波(例:超新星爆発) Х Credit: LIGO/T. Pyle Credit: NASA/ESA

背景重力波(例:連星合体の重ね合わせ)

22

連続波(例:回転する中性子星)

GW190521 R. Abbott et al., Phys. Rev. Lett. 125, no.10, 101102 (2020), R. Abbott et al., Astrophys. J. Lett. 900, no.1, L13 (2020).

• Zwicky transient facility (ZTF) による 電磁波対応天体ZTF19abanrhrの検出

M. J. Graham et al., Phys. Rev. Lett. **124**, no.25, 251102 (2020).

• ハッブル定数の測定: $H_0 = 50.4^{+28.1}_{-19.5}$ km/s/Mpc (NRSur7dq4)

S. Mukherjee et al., arXiv:2009.14199 (2020).

GW190521(赤い領域)とZTF19abanrhr(経緯線)の二次元位置

伴星は中性子星か?

中性子星の最大質量との比較

- M_{max,TOV} 電波、X線、重力波観測から推定 された状態方程式から計算 (Landry, Essick & Chatziioannou 2020)
- M_{max,GNS} 銀河内の中性子星の質量分布を フィッティングすることで計算 (Farr & Chatziioannou 2020)
- *M*_{max}(spin) 中性子星のスピンが大きい場合 も考慮して計算 (右図には示されてない)

どの場合でも、 $p(m_2 < M_{\text{max}}) \sim 95\%$

伴星は中性子星か?

- しかし、伴星が中性子星である直接的な 証拠は見つかっていない。
- 電磁波対応天体は見つかっていない。
- 重力波データから潮汐変形の兆候は見 えてない(右図参照)。
- →軽いブラックホールの可能性は否定で きない(例:原始ブラックホール)。

推定された伴星の潮汐変形率

自転角運動量 (スピン)

	GW200105	GW200115
$\overrightarrow{\chi_1}$	$ \overrightarrow{\chi_1} < 0.23$	$\chi_{1,z} = -0.19^{+0.24}_{-0.50}$
$\overrightarrow{\chi_2}$	ほぼ制限なし	$\frac{P(\chi_{1,z} < 0) = 88\%}{\text{ほぼ制限なし}}$

連星の形成過程

Distance-inclination

Distance
 GW200105: 280⁺¹¹⁰₋₁₁₀ Mpc
 GW200115: 300⁺¹⁵⁰₋₁₀₀ Mpc
 (c.f. 40 Mpc for GW170817)

• Inclination Both events disfavor $\theta_{JN} \sim 90^{\circ}$, suppressing higher-order moments.

Waveform systematics

Miscellaneous properties

 Remnant objects Mass

$$M_{\rm f} = \begin{cases} 10.4^{+2.7}_{-2.0} M_{\odot} & (\text{GW200105}) \\ 7.8^{+1.4}_{-1.6} M_{\odot} & (\text{GW200115}) \end{cases}$$

Spin

$$\chi_{\rm f} = \begin{cases} 0.43^{+0.04}_{-0.03} & (\text{GW200105}) \\ 0.38^{+0.04}_{-0.02} & (\text{GW200115}) \end{cases}$$

• Test of general relativity

Less stringent constraints than the current ones due to the weak signals.

• Higher-order modes

Inconclusive

• Precession effect

Inconclusive

• Lensing scenario unlikely for GW200105 and GW200115, as masses do not overlap.

Neutron star masses

Consistent with Galactic NS population from EM observations

Black hole masses

GW200115 BH may be in the lower mass gap

- $P(3M_{\odot} \le m_1 \le 5M_{\odot}) = 30\%$
- Correlated with negativelyaligned primary spin

Galactic NS masses from Alsing et al. 2018, MNRAS 478, no.1, 1377-1391

Spins

GW200115

<u>Magnitudes</u>

- BHs consistent with zero spin
- GW200115: can't rule out high BH spin
 - Consistent with high BH spins from NSBH progenitors

<u>Alignment</u>

- GW200115 BH: probably negativelyaligned
 - Correlated with low primary mass
 - $P(\chi_{1,z} < 0) = 88\%$

Electromagnetic observations

No significant detections of electromagnetic counterparts for both events.

X

e.g. S. Anand et al., Nature Astron. 5, 46 (2021).

This is consistent with

- **No** tidal disruption expected due to highly asymmetric masses (and negative spins for GW200115)
- The large distances (~7 times more distant than GW170817) and large uncertainties of their sky localization

Tidal deformability

The combination enters the leading tidal effect:

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}.$$

For NSBH ($\Lambda_1 = 0$),

$$\tilde{\Lambda} = \frac{16}{13} \frac{12 + q}{(1+q)^5} q^4 \Lambda_2, \qquad \left(q \equiv \frac{m_2}{m_1}\right)$$

which becomes vanishing for highly asymmetric masses $(q \rightarrow 0)$.