GW170817: Modeling based on numerical relativity and its implication

Masaru Shibata

Center for Gravitational Physics,

Yukawa Institute for Theoretical Physics, Kyoto University

Max Planck Institute for Gravitational Physics at Potsdam

Collaborators: S. Fujibayashi, K. Hotokezaka,

K. Kawaguchi,

K. Kiuchi, K. Kyutoku, Y. Sekiguchi & M. Tanaka

Outline

- I. Brief introduction of GW170817
- II. Scenarios of NS-NS merger
- III. Mass ejection of GW170817
- Dynamical mass ejection
- Viscous ejection from merger remnants
- IV. Interpreting EM counterparts of GW170817
- V. Summary

I Brief introduction of GW170817

Chirp M= $m_1^{3/5}m_2^{3/5}(m_1+m_2)^{-1/5}$

Key parameters in this talk:

• Chirp mass = $1.188^{+0.004}_{-0.002} M_{sun}$ • Total mass = $2.73 - 2.78 M_{sun}$ (90%CL, reasonable spin assump.)

→ Binary neutron stars

- Assuming reasonable spin of NSs, Mass ratio = 0.7−1.0 (90% CL)
 → Not very asymmetric
- Viewing angle < ~30°
- Tidal deformability < 800</p>
 → NS radius < 13.5 km</p>

PRL 119, 161101 (2017)

Gravitational waveform from NS-NS: (1.35-1.35 solar mass)

Hotokezaka et al. 2016 (Bernuzzi et al., Kiuchi et al. 2017,...)

Optical-IR EM counterparts of GW170817

Consistent with Kilonova/Macronova model

(Li-Paczyski 1998, Metzger et al. 2010)

Consistent with Kilonova/Macronova model

(Li-Paczynski 1998, Metzger et al. 2010)

Peak luminosity & time of macronova/kilonova

Qualitatively agree with GW170817 but not quantitatively

Depend on ejecta mass, velocity, opacity Uncertainty of opacity: ~ 2 orders of magnitude which is determined by *lanthanide fraction* (See talk by M. Tanaka for more details)

II Scenarios of NS-NS mergers in NR

Total mass of GW170817 is $2.73 - 2.78 M_{sun}$ (90%CL)

Mass ejection history for MNS formation

Time after merger

Sekiguchi et al. 2016

Properties of dynamical ejecta for NS-NS

• Very good for r-process nucleosynthesis but

$$\rightarrow \kappa \sim 10 \text{ cm}^2/\text{g}$$
: large value

• Mass: ~ 0.001—0.01 M_{sun}

♦ "Average" velocity: 0.15—0.25c

Cannot reproduce early shining, but late infrared

2 Mass ejection from merger remnant

 Realistic remnants = Magnetized massive NS + torus in differential rotation

- \rightarrow MHD turbulence
- \rightarrow Viscous hydrodynamics effect plays an important role
- → Viscous radiation hydrodynamics simulation (Fujibayashi et al. ApJ '18)

Viscous-rad hydrodynamics for post-merger MNS (S. Fujibayashi et al. ApJ 2018) Rest-mass density $\alpha_v = 0.04$

 $M \sim 0.05$ solar mass, $v \sim 0.05$ c Substantial fraction of disk mass is ejected

Wide 4500×4500 km FOCUS ON THIS 300×300 km

Electron fraction distribution by viscosity (total) 10^{-2} $t < \sim 1s$ $t \sim 2s$ **¥**Neutrino irradiation from MNS $p + \overline{v}_e \rightarrow n + e^+$ $n + v_e \rightarrow p + e^-$ Mass per bin [M_{sun} 10^{-3} Lanthanide synthesis Longterm irradiation 10^{-4} $\left[Y_{e,equil} \sim \left[1 + \frac{L_{\overline{v}_e}}{L_{v_e}} \frac{\left\langle E_{\overline{v}_e} \right\rangle - 2(m_n - m_p)}{\left\langle E_{v_e} \right\rangle + 2(m_n - m_p)} \right] \right]$ $\kappa < 1 \text{ cm}^2/\text{g}$ 10^{-5} . (Qian & Woosley, 1996) 0.2 0.3 0.4 0.5 0.1 () Υ_ρ

Only *small lanthanide synthesis* due to **strong neutrino irradiation from remnant NS: very good**

Neutrino irradiation from remnant neutron star

Peak luminosity and peak time for the merger remnant ejecta

$$L_{\max} \sim \frac{1 \times 10^{42} \text{ ergs/s}}{\text{bright}} \left(\frac{M}{0.04M_{\odot}} \right)^{1/2} \left(\frac{v}{0.05c} \right)^{1/2} \left(\frac{\kappa}{0.1 \text{ cm}^2 / \text{g}} \right)^{-1/2} \left(\frac{f_{\text{r-proc}}}{10^{-6}} \right)$$

at $t \sim \frac{1 \text{ days}}{\text{fast}} \left(\frac{M}{0.04M_{\odot}} \right)^{1/2} \left(\frac{v}{0.05c} \right)^{-1/2} \left(\frac{\kappa}{0.1 \text{ cm}^2 / \text{g}} \right)^{1/2}$
 \downarrow
 $L_{\max} \sim 10^{42} \text{ ergs/s} \quad \& \quad t \sim 1 \text{ days} \text{ for } M \sim 4 \times 10^{-2} M_{\odot}$

Shine at one day

IV Model of EM counter part of GW170817

Dynamical ejecta has very fast component HB-135-135

Radiation transfer simulation: good agreement

(K. Kawaguchi, M. Tanaka, MS; See talk by Tanaka for details)

Consistent with radio, optical, X (synchrotron rad) HB-135-135

V Summary

- EM counterparts of GW170817 can be well interpreted by numerical-relativity results self-consistently except for (tiny-energy) gamma-ray emission
- Fully physical argument, not phenomenological (artificial)
- Too good, plausible ?? The reason for the agreement is
- We know the initial condition of the merger well, so that we can get correct results by accurate simulation
- Next observation hopefully would confirm this fact
- Note however that the next observational results could be significantly different from the GW170817

