

THE EHE EVENT **170922** AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY

ニュートリノは極小の素粒子の世界と 極大の宇宙を結ぶ掛け橋

尾田隆章

The Cosmic Neutrinos TeV->EeV

Neutrinos as smoking-gun for hadronic sources

EVENT SIGNATURE

CC Muon Neutrino

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution at high energies

Neutral Current / Electron Neutrino

cascade (data)

 ≈ ±15% deposited energy resolution
≈ 10° angular resolution (in IceCube) (at energies ≥ 100 TeV)

CC Tau Neutrino

"double-bang" (\geq 10PeV) and other
signatures (simulation)

(not observed yet: τ decay length is 50 m/PeV)

ON-BOARD LEDS

Position and timing calibrations

DISCOVERY OF ASTROPHYSICAL NEUTRINO

EVIDENCE OF ASTROPHYSICAL NEUTRINO

82 events in 6 years

sin(Declination)

EVIDENCE OF ASTROPHYSICAL NEUTRINO

CORRELATIONS WITH BLAZARS

86% Fermi diffuse photons are from blazars highly variable EM emission lceCube time-integrated stacking analysis

IceCube, Astrophys.J. 849 (2017) 67 <16% of E^{-2.5} flux above 1 TeV

Icecube, Astrophys.J. 824 (2016) no.2, 115 Short duration -> low background No neutrinos observed in coincidence with GRBs Prompt emission from GRBs can produce <1% of observed neutrino flux

Bechtol K et al. 2017 Astrophys. J. 836 47 86% Fermi diffuse photons are from blazars <30% (at 100 TeV) diffuse nu flux Applies to pp optical thin sources

Optical, X-ray, Radio and Gamma-Ray Follow-Up

IceCube real-time stream

High cosmic v purity samples. Launched in 2016! high chance of real cosmic neutrino signals angular resolutions so-so

Atmospheric BG

Event selection for EHE alerts

↓µ-dominatec ν only Atmosphere (exaggerated) Air shower

A story about EHE alert IC170922A

ON A QUIET SATURDAY MORNING IN LATE SEPTEMBER 2017

#realtime

 $\mathfrak{L} \mid \mathfrak{L}$ 131 $\mid \mathfrak{L}$ 12 \mid Realtime alert followup...

IceCube 170922A

NPE 5,786 cos(zenith) -0.13 right on the "sweet spot" signalness : 56.5 % Atmospheric BG E⁻² signal

Observatory	Observation Time	Detection	Source	Comments
Fermi-LAT	Sept 15-27	1	TXS 0506+056 / 3FGLJ0509.4+0541 / 3FHLJ0509.4+0542	Flaring >800 MeV
Swift-XRT	Sept 28 00:09-22:42 UT Sept 27 18:52 UT, 5 ks Sept 30 - Oct 7, 2 ks	1	1SXPS J050925.9+054184	Spectral softening/evolution
Liverpool	Sept 28, 900 s	1	TXS 0506+056 (PMN J0509+0541)	Typical BL Lac spectrum "Bluer when brighter"
ASAS-SN	-50 days	1	TXS 0506+056	~0.5 mag in V-band
AGILE	Sept 18 12:00 UT + 8 days ±6 days	1	< 1° from 3FGL J0509.4+0541	Excess > 100 MeV
H.E.S.S.	Sept 28 01:05 UT, 1 hr Sept 24 08:10 UT, 1 hr	×		Set 90% CL UL on v fluence
HAWC	Sept 15 09:04 UT - Sept 19 14:41 UT Sept 21 08:41 UT to Sept 27 14:10 UT	×		At T0, this location was not in HAWC's fov
ANTARES	±1 hr and ±1 day of T0	×		Set 90% CL UL on v fluence
INTEGRAL	±800 s of T0	×		Set 8 UL
IC multi-day	Sept 15 00:00 UT - Sept 29 00:00 UT	×		
VERITRAS	Sept 28, 1 hr + Sept 28-89, 5.5 hrs	×		~200 GeV

'SPATIAL COINCIDENCE'

Historical EHE events

'TIME COINCIDENCE'

7&flare=27

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT Credential Certification: David J. Thompson (David.J.Thompson@nasa.gov)

Fermi All-sky Variability Analysis (FAVA)

10 7.5 Relative Flux > 800 MeV 5 2.5 -2.5 239859818 270099818 300339818 330579818 360819818 391059818 421299818 451539818 481779818 512019818 MET

https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/SourceReport.php?week=47

Exposure Map

P-VALUE CALCULATION

Testing nu->gamma correlations

Is there a **spatial-timing** correlation between the EHE alert event with Fermi flare?

H0: No spatial or time correlation between IceCube EHE alert event with Fermi 3FGL+3FHL catalogue

Use Fermi light curves collected from the past 9 years

Results soon to be published, now in iterations with reviewers

Equatorial

How often do we see a 3FGL source in
the error window of EHE event
$$TS \propto \mathcal{L}_{\text{spatial}} \cdot \mathcal{L}_{\text{flux}} \cdot \mathcal{A}_{eff}(\theta)$$
$$\mathcal{L}_{\text{flux}} \propto I_{\gamma}(t) / \langle I_{\gamma} \rangle$$
$$\mathcal{L}_{\text{flux}} \propto \frac{\phi_E(t)}{\sum_{s}^{N_s} \sum_{i}^{N_t} \phi_E(t_i)}$$

Hypo 1: v detection scales to variations in γ flux of the source, regardless of γ luminosity Hypo 2: v detection scales linearly to γ energy flux. Brighter γ source more likely How often do we see a 3FGL source in the error window of EHE event

$$TS \propto \mathcal{L}_{\text{spatial}} \cdot \mathcal{L}_{\text{flux}} \cdot \mathcal{A}_{eff}(\theta)$$

Scales with variations of γ flux of the source Or Scales with γ energy flux, the brightness of the source

P-VALUE CALCULATION

Pseudo experiments

- Randomly sample time t (flat pdf)
- Randomly sample DEC according to event selection pdf
- Randomly sample RA

Equatorial

• Construct TS for H0

Exposure Map

37

NEW ANALYSIS FOR PEV EVENT SEARCHES

THE FUTURE: GEN2

In-ice upgrade:

- \sim 10,000 more optical sensors
- 5 10 km³ instrumented volume
- \sim 120 strings

Wish-list:

- sensors with directionality and more effective area
- smaller holes to reduce drilling cost
- a surface array for veto cosmic-ray background

Challenges:

• -45°C, 10,000 psi, logistics

DESIGNS FOR IN-ICE SENSORS

- More sparse string spacing → sensors need to have larger effective area (Cherenkov UV photons)
 - Benefits veto, event reconstruction
- For > PeV neutrinos we should have PMTs looking up since down-going is favoured due to earth absorption

D-EGG DETECTORS MAP OUT ICE

Phase 1 IceCube upgrade: better systematics and improve angular resolution

D-Egg schematics

D-Egg prototypes

GEN2 POINT SOURCE SENSITIVITY

WAY TO GO FOR UHECR SOURCES?

THANK YOU VERY MUCH