

宇宙線直接観測の成果と展望 宇宙線観測と素粒子物理学 Cosmic-ray observations and particle physics

Kazunori Kohri 郡 和範 Theory Center, KEK and SOKENDAI, Tsukuba

Contents

• Dark Matter (WIMP)との関係 メインに話します

ガンマ線観測から (Fermi, CTA)
 電子陽電子、反陽子観測から (AMS-02, CALET)

Axion Like Particles との関係 ほとんど話さない

• Primordial Black Holesとの関係 ほとんど話さない

Planck Satellite

Einstein's Cosmological Constant Or unknown scalar field?

Weakly-interacting massive particle (WIMP)

- σ_{ann} is close to that of Weak Interaction
- Ω_{WIMP} coincides $\Omega_{\text{DM,obs}}$ (if $\langle \sigma v \rangle^2 3 \times 10^{-26} \text{ cm}^3/\text{s}$)
- Lightest SUSY Particle (LSP) can be WIMP

$$\chi = c_1 \tilde{B} + c_2 \tilde{W} + c_3 \tilde{H}_1 + c_4 \tilde{H}_2 \quad \Leftrightarrow \text{ photon, Z-boson, Higgs}$$

Kaz Kohri (KEK)

Thermal freeze out of WIMP

Higgs mass and SUSY breaking

We need a higher SUSY breaking with >>10 TeV Ibanez et al, arXiv:1301.5167

SUSY breaking scales

• Gravitino mass represents the scale of SUSY breaking \tilde{W} tends to be the LSP

$$m_{3/2} \sim \frac{F}{M_p} \sim \begin{cases} >> O(1) \text{TeV} & \text{anomaly mediation} \\ >\sim O(10^2) \text{GeV} - O(1) \text{TeV} & \text{gravity med.} \\ < O(10^2) \text{GeV} - O(1) \text{TeV} & \text{gauge med.} \end{cases}$$

gravitino tends to be the LSP

Mass matrix of neutralinos

• Mass matrix

$$\mathcal{M}_{N} = \begin{pmatrix} M_{1} & 0 & -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\sin\beta\sin\theta_{W} \\ 0 & M_{2} & M_{Z}\cos\beta\cos\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} \\ -M_{Z}\cos\beta\sin\theta_{W} & M_{Z}\cos\beta\cos\theta_{W} & 0 & -\mu \\ M_{Z}\sin\beta\sin\theta_{W} & -M_{Z}\sin\beta\cos\theta_{W} & -\mu & 0 \end{pmatrix}$$

in the basis $(-i\tilde{B}, -i\tilde{W}^3, \tilde{H}_1^0, \tilde{H}_2^0)$ • Mass parameters, e.g., in anomaly-mediated SUSY breaking

$$M_i = -b_i g_i^2 M_{
m SUSY}$$
 Giudice, L
Randall an

Giudice, Luty, Murayama, Rattazzi, 1998 Randall and Sundram, 1998

 g_i are gauge coupling constants b_i are the 1-loop β -function coefficients $M_1 : M_2 : M_3 = 3.3 : 1 : -10$

Should we stick to canonical one?

 $\sigma < \sigma_{
m canonical}$

- Such a larger relic density can be diluted by entropy production e.g, by massivedecaying particles (moduli, gravitino, ...)
- $\sigma > \sigma_{canonical}$
 - Such a smaller relic density can be replaced by non-thermally-produced DM e.g, by massive-decaying particles (moduli, gravitino, ...)

We may allow even a decaying DM with lifetime of > 10²⁶ sec through another interactions or a parity violation (e.g., R-parity violation in SUSY)

Indirect detection of DM

Annihilation or Decay?

Daughter particles

Propagations of charged particles

Products from DM annihilation/decay

- DM \rightarrow WW (Wino neutralino LSP or ...) $\begin{cases}
 \rightarrow q + \overline{q} \rightarrow p + \overline{p} + n + \overline{n} + \pi^{+} + \pi^{-} + \pi^{0} + ... \\
 \rightarrow p + \overline{p} + e^{-} + v + \gamma + ... \\
 \rightarrow \ell^{\pm} + v \rightarrow e^{-} + v + \gamma + ...
 \end{cases}$ • DM \rightarrow b bbar (neutralino LSP, or ...)
 - DM \rightarrow b bbar (neutralino LSP, or ...) $\rightarrow p + \overline{p} + n + \overline{n} + \pi^{+} + \pi^{-} + \pi^{0} + ...$

$$\rightarrow p + \overline{p} + e^- + v + \gamma + \dots$$

• DM \rightarrow leptons (slepton LSP, v_{R_i} , scalar $v_{R_{ij}}$ or ...)

$$\rightarrow \ell^{\pm} + \nu \rightarrow e^{-} + \nu + \gamma + \dots$$

Gamma-ray observations

How can we obtain the flux from a source?

Galactic-center gamma-ray excesses and dark matter annihilation

Daylan et al, 2014

Constraints by Fermi gamma-ray sattelite

Fermi-LAT Collaboration (Ackermann, M. et al.) Phys.Rev.Lett. 115 (2015) See also, FermiLAT-Magic combined, Ahnen et al., arXiv:1601.06590

Future TeV-gamma observation Cherenkov Telescope Array (CTA)

One order of magnitude better sensitivity at TeV

CTA sensitivity

CTA collaboration, John Carr et al, arXiv:1508.06128 [astro-ph.HE]

CTA sensitivity

CTA collaboration, John Carr et al, arXiv:1508.06128 [astro-ph.HE]

CTAに特化した宇宙物理の 専門家による解析が必要

Hiroshima, M. Hayashida, KK (2017) in preparation

• 空間分布を考慮した解析

- Backgroundとsignalの区別
- Calibrationの難しさ(何をもってoffとするか)
- •

17/03/20

Kaz Kohri (KEK)

Nagisa Hiroshima's slide

Detectability

Hiroshima, M. Hayashida, KK, 2017 in preparation

Charged particles from DM annihilation/decay

positron e⁺

antiproton \overline{P}

Diffusion of charged particles

Diffusion model

$$\begin{split} \frac{\partial}{\partial t} f(E,\vec{x}) = & K(E) \nabla^2 f(E,\vec{x}) \\ &+ \frac{\partial}{\partial E} [b(E) f(E,\vec{x})] + \begin{matrix} \text{Source term by decaying} \\ \text{Annihilating DM} \end{matrix}$$

Flux

$$\Phi_{e^+}^{(\rm DM)}(E, \vec{x}_{\odot}) = (c/4\pi)f(E, \vec{x}_{\odot})$$

Steady-state solution

K(E)∝E^{-δ}: diffusion coefficient (δ ~1/3 by AMS-02, 2016)

b(E): energy-loss rate

Propagating within a few kpc, normalized to fit B/C

$$r_{\text{propagation}} \sim \sqrt{EK(E) / b(E)} \sim \text{kpc}(E / TeV)^{-(1-\delta)/2}$$

But still large uncertainties, e.g., in p-N cross sections, propagation models and so on

Discriminate Pulsar from DM by CALET?

S. Bhattacharyya, H.Motz, S.Torii, Y.Asaoka, arXiv:1702.02546 [astro-ph.HE]

Decaying DM $\rightarrow \mu\mu\nu$: 73% and eev: 27% with m_{DM} = 2TeV

Antiprotons from annihilating/decaying dark matter and the galactic center anomaly

A simultaneous fitting to positron anomaly is a big challenge

Astrophysics models Fitted to a data by local SNR model Fujita, KK, Yamazaki, Ioka, arXiv:0903.5298

KK, Ioka, Fujita, Yamazaki, arXiv:1505.01236

Summary

- WIMP DM is a good target searched by cosmic-ray physics
- Future experiments such as CALET and CTA will reveal the nature of WIMP dark matter
- SUSY models with Wino dark matter will be tested in near future
- A simultaneous fitting to both positron and antiproton with satisfying gamma-rays obs. is a big challenge

Gamma-ray accessible parameters

Hooper-Serpico (07)

Excluded regions, which highly depends on magnetic field configulations

The Fermi-LAT Collaboration, arXiv:1603.06978

Primordial Black Hole dark matter

Horizon mass with the density fluctuation of the order O(1) can collapse to a PBH

Carr, Kohri, Sendouda, Yokoyama (2009)

Carr, Kunel, Sandstad (2016)