宇宙線観測と天体物理学 **Astrophysics and Cosmic Ray Observation** 井岡 邦仁 Kunihito IOKA (Center for Gravitational Physics, YITP, Kyoto U.)

Not a complete review but my biased view

15 Dec 2015

Cosmic Rays Oth: Power law $E < 3 \times 10^{15} eV$ (Knee) $F \propto E^{-2.7}$ Supernova remnant $L_{CR} \sim 10^{41} \text{ erg/s} \sim 0.1 E_{SN}/t_{SN}$ <E<5×10¹⁸eV (Ankle) $F \propto E^{-3-3.2}$ Galactic origin? <10¹⁴⁻¹⁵eV by SNR? <E<4×10¹⁹eV (GZK cutoff?) $F \propto E^{-2.7}$ Extra-Galactic: AGN? GRB?

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? ¹⁰Be **AMS-02**
- He, C, O : Superbubble?
 - ✓ Ne, Mg, Si, Fe hardening?

Anti-³He?

©AMS-CERN-Dec-2016

Astrophysically POSSIBLE?

 \sim anti-³He/10⁹ He \sim anti-³He/10¹⁰ p ~anti-³He/10⁶ anti-p 10° d²N/2πp_Tdp_Tdy (c²/GeV²) d ³He 10^{-8} STAR collabo, 201 10-10 Baryon number

> Differential invariant yields in central 200GeV Au+Au

PAMELA

Positron excess above the predicted secondary

Boron is 2ndary of Carbon $D_{diff} \sim D_0 (\epsilon/\epsilon_0)^{-\delta}$ δ~0.333±0.015 (Kolmogorov) $D_0 \sim 2 \times 10^{28} \text{ cm}^2/\text{s}$ Subject to change by - Disk & halo -Wind convection - Turbulent diffusion Reacceleration

Isotope ratio: ¹⁰Be/⁹Be

Cosmic-Ray Electron An Excess also in (e⁺+e⁻) Spectrum

©Bonino@Fermi Sympo

10[°] Energy [GeV]₁₄ 15 Dec 2015

Bright Side of the Universe by K. IOKA

e[±] Cooling

We are here

Our galaxy

 $t_{\rm cool}$

e[±] lose energy (cool) via inverse Compton and synchroton

Positron source

 $d < 2\sqrt{D_{\text{diff}}t_{\text{cool}}} \sim 1 \text{ kpc}\left(\frac{\varepsilon}{\text{TeV}}\right)^{2}$ $\frac{4\pi}{3}\sigma_T c \left(\frac{B^2}{8\pi} + U_{\gamma}\right) \left(\frac{\varepsilon}{mc^2}\right)^2$

Energies and rates of the cosmic-ray particles

Astrophysical Models

16

Pulsars

Abdo+ 13

Pulsar Wind Nebula Most spin-down energy ⇒ Pulsar wind

(Relativistic plasma of magnetized e[±])

 $L_{e^{\pm}} \sim 10 L_{\gamma}$

Termination shock $\Rightarrow e^{\pm}$ acceleration \Rightarrow Power law spec.

PWN→SNR→ISM

TeV Gamma-Ray Sky

TeV γ-ray sources in the Milky Way (Galactic disk)

Pulsar Wind Nebula are the dominant class

Sources with multiple associations

Caveat: Most are unidentified

HAWC

 \sqrt{TS}

Spectral Fitting

Astrophysical models reproduce e⁺ & e⁻ spectra

Supported by astrophysical observations Consistent with a charge symmetric source term Primary e⁻ spectrum may have hardening

Astrophysical Models

Supernova Remnant

Major CR sources **P**_{CR} + **P**_{surrounding} $\rightarrow \pi \rightarrow e^+e^-$ Hadronic origin Typical τ_{pp} is small - Dense matter (molecular cloud) - Reacceleration

> Fujita, Kohri, Yamazaki & KI 09 Blasi & Serpico 09

25

GW150914

Ist direct detection **BH-BH** 36M_o+29M_o L~200M_@c²/s $\sim 10^{-3} c^{5}/G$ GWI51226 Normalized amplitude

LVT151012 events

2017/03/10

Astro in the GW Era by K. IOKA

Many BHs in Our Galaxy

KI, Matsumoto, Teraki, Kashiyama & Murase 16

70 Gpc⁻³ yr⁻¹ ÷ 0.01 galaxy Mpc⁻³ × 10¹⁰ yr ~ 70000 Merged BHs/galaxy E_{sbin}~10⁸ Supernovae **Clues?**

- Spectrum at >TeV
- Anisotropy
- Anti-proton

Cooling Cutoff

High-energy e[±] lose energy by synch. & inv. Compton

Spectrum: Fine Structure

CALET (CALorimetric Electron Telescope)

(converted to MIP by calibration)

Set on Aug. 25

>TeV data is taking!

Wukong (悟空; DAMPE) DArk Matter Particle Explore

China, Swiss, Italy 17 Dec 2015~ Total: 33 rad length

e, γ: 5GeV-10TeV ΔE=1%@800GeV 0.3 m²

p: 100GeV-100TeV ∆E=40%@800GeV 0.2 m²

 $\Delta \theta$ =0.1°@100GeV

Limit $\infty t^{-1/2}$; For multiple sources, anisotropy \downarrow
Local Structures

Spiral distribution

Local B Structure

p Anisotropy

HAWK observe small-scale anisotropy of TeV CRs

CTA

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? ¹⁰Be **AMS-02**
- He, C, O : Superbubble?

✓ Ne, Mg, Si, Fe hardening?

Figure 1. Antiproton to proton ratio measured by AMS. As seen, the measured ratio cannot be explained by existing models of secondary production.

Just 2ndary Anti-proton?

Just 2ndary Anti-proton?

Similar results on anti-proton uncertainties

Right Branching Fraction

B/C for e[±] Excess

Similar B/C upturn was predicted for e^{\pm} excess e⁺, anti-proton & boron are 2ndary No B/C upturn \Rightarrow SN happens in low metal region?

B/C v.s. Li

AMS-02 has internal inconsistency?

Both boron and Lithium are usually secondary

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? ¹⁰Be **AMS-02**
- He, C, O : Superbubble?

✓ Ne, Mg, Si, Fe hardening?

Spectral Breaks

Helium is Special

- He/p ~ **3×Y**₀! @100TeV
- Stellar nucleosynthesis
 never double the mean Y
 (`.` Schonberg-Chandrasekhar)
 - : Reason to invoke **Big Bang**
- \Rightarrow Ejecta-enriched region

 $M_{He}/M <$

q_{SC}~0.1

He

CR origin ~ Superbubble?

He & C-rich

Isolated SNR (~Fermi SNR)

not a main channel??

Multiple SNR Superbubble

Predict hardenings of heavy elements

The AMS carbon/oxygen flux ratio

Scenarios for Different Cosmic-Ray Spectra

TABLE I. Score sheet for models of different cosmic-ray spectra.

Model	Mechanism	Score	Comment	Reference
Propagation	Spallation	С	Inconsistent with data of B/C	[9]
Different sources	Wind	С	Requires suppression of He (p) acceleration in the ISM (winds)	[10]
	Reverse shock	В	Requires suppression of He acceleration in the ISM	[11]
Injection	Injection	С	Inconsistent with $C/He = const$	[12]
Inhomogeneous environment	Ionization	С	Inconsistent with $C/He = const$	[13]
	Superbubble	А	Consistent with observations, and CRs originate from ejecta.	[8]

Scenarios for Break

- I. Propagation
- 2. Injection
- 3. Local high-energy source
- 4. Local low-energy sou

Vladimirov+ 12 Khiali, Haino & Feng 17

B/C break? Ne, Mg, Si, Fe breaks?

Contents

- e[±] excess: Astrophysical
 - ✓ TeV spec., Anisotropy, ... CALET
- p: No excess or pp?
 - ✓ B/C ⇔ Li? ¹⁰Be **AMS-02**
- He, C, O : Superbubble?
 - ✓ Ne, Mg, Si, Fe hardening?

Thank

pp in Supernova Remnant without Pulsars nor DM?

Galactic Center Morselli's talk

Galactic Center Morselli's talk

The AMS (e⁺ + e⁻) flux in 2024

AMS will be able to distinguish the $(e^+ + e^-)$ flux behavior above 1 TeV₂₆

Gamma-Ray Pulsars

Fermi satellite (LAT) has found >160 γ -ray pulsars CGRO PSRs (+), young radio-selected (O), young gamma-selected (D), MSPs (\diamondsuit)

TeV Gamma-Ray Sky

1307.4690

b (deg)

b (deg)

b (deg)

Physics Result 17: Primary and secondary Cosmic Rays have very different momentum dependence

Physics Result 18: The AMS carbon/helium flux ratio

Physics Result 10: The Lithium flux

New AMS results on Secondary Cosmic Rays (Lithium)

New information: The Lithium spectrum behaves similar to protons and Helium and the Lithium flux cannot be described by a single power law.

Flux Ratios: Beryllium-to-Boron and age of cosmic rays

¹⁰Be \rightarrow ¹⁰B + e⁻ + \overline{v}_{e} The ¹⁰Be half-life is 1.5×10⁶ years.

The Be/B ratio rises with energy due to relativistic time dilation. Be/B provides information on the age of cosmic rays in the Galaxy.

Physics Result 13: The Beryllium-to-Boron flux ratio

AMS: The age of cosmic rays in the galaxy is ~12 million years.