宇宙線・宇宙物理領域、素粒子実験領域、理論核物理領域、実験核物理領域、素粒子論領域合同シンポジウム主題:地下実験による宇宙・素粒子・原子核研究

重力波実験の現状と展望

大阪市立大学理学研究科 神田展行 on behalf of KAGRA collaboration (for KAGRA part) 2017/9/12 日本物理学会2017年秋季大会, 宇都宮大学(峰キャンパス)

本日の話

重力波検出の現在 連星ブラックホール合体の発見 LIGO, Virgo Observational Run (O2) KAGRA

地下へ潜ろう! なぜ地下なのか?

(地下からの)重力波検出の将来 3rd Generation Detectors Einstein Telescope Cosmic Explorer 地下から宇宙の果てを見る

ブラックホール連星合体の発見

初観測重力波は、大質量ブラックホール連星(Binary Black-Hole: BBH)合体が源

けで目視できる。

Normalized Amplitude

2

Et	CW150014	CW15100(1.1.77151010	
Event	GW150914	GW151226	LV1151012	
Signal-to-noise ratio ρ	23.7	13.0	9.7	
False alarm rate FAR/yr^{-1}	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37	
p-value	$7.5 imes 10^{-8}$	$7.5 imes 10^{-8}$	0.045	
Significance	$> 5.3 \sigma$	$> 5.3 \sigma$	1.7 σ	
Primary mass $m_1^{\text{source}}/\mathrm{M}_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}	
Secondary mass $m_2^{\text{source}}/M_{\odot}$	$29.1_{-4.4}^{+3.7}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}	
Chirp mass $\mathscr{M}^{source}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$	
Total mass $M^{ m source}/ m M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}	
Effective inspiral spin $\chi_{\rm eff}$	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20 \\ -0.10}$	$0.0\substack{+0.3 \\ -0.2}$	
Final mass $M_{ m f}^{ m source}/ m M_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}	
Final spin $a_{\rm f}$	$0.68\substack{+0.05\\-0.06}$	$0.74\substack{+0.06\\-0.06}$	$0.66\substack{+0.09\\-0.10}$	
Radiated energy $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$3.0\substack{+0.5\\-0.4}$	$1.0\substack{+0.1 \\ -0.2}$	$1.5\substack{+0.3 \\ -0.4}$	
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4}\times \\ 10^{56}$	$3.3^{+0.8}_{-1.6}\times \\ 10^{56}$	$3.1^{+0.8}_{-1.8}\times \\ 10^{56}$	
Luminosity distance $D_{\rm L}/{ m Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}	
Source redshift z	$0.09\substack{+0.03 \\ -0.04}$	$0.09\substack{+0.03 \\ -0.04}$	$0.20\substack{+0.09 \\ -0.09}$	
Sky localization $\Delta\Omega/deg^2$	230	850	1600	

GW170104 $31.2^{+8.4}_{-6.0}M_{\odot}$ Primary black hole mass m_1 $19.4^{+5.3}_{-5.9}M_{\odot}$ Secondary black hole mass m_2 Chirp mass \mathcal{M} $21.1^{+2.4}_{-2.7}M_{\odot}$ $50.7^{+5.9}_{-5.0} M_{\odot}$ Total mass M $48.7^{+5.7}_{-4.6}M_{\odot}$ Final black hole mass M_f $2.0^{+0.6}_{-0.7} M_{\odot} c^2$ Radiated energy $E_{\rm rad}$ $3.1^{+0.7}_{-1.3} \times 10^{56} \text{erg s}^{-1}$ Peak luminosity ℓ_{peak} Effective inspiral spin parameter $\chi_{\rm eff}$ $-0.12^{+0.21}_{-0.30}$ Final black hole spin a_f $0.64\substack{+0.09 \\ -0.20}$ Luminosity distance D_L 880⁺⁴⁵⁰₋₃₉₀ Mpc $0.18\substack{+0.08 \\ -0.07}$ Source redshift zsky localization ~1200 deg²

ブラックホールの質量

Black Holes of Known Mass

LIGO, Virgo Observing Run (O2) 2016/11/30 : O2 start 2017/1/4 : 3rd detection = GW170104 2017/8/1 : Advanced Virgo joined 2017/8/25 : O2 end

Virgo

https://www.ligo.caltech.edu

検出レンジと質量

検出レンジ は、感度曲線 と連星の質量 に依存。

- Underground
 - Kamioka mine
 - Silent and Stable
- Cryogenic mirror
 - 20K
 - Sapphire substrate
- 3km baseline

Schedule

- 2010 : Construction start
- early 2016 : 1st operation in normal temperature
- early 2018 : cryogenic operation

KAGRAの現状

ロードマップ

現在建設中:bKAGRA Phase 1

重力波(KAGRA)セッション:13aS35,13pU34,15aU31 KAGRAステータストーク13aS35-1 山元(ICRR)

Pre-stabilized laser (2016.9.20)

Cryostat for input test mass (2016.9.20)

input mode cleaner suspension system (2015.10.30)

P

Cryo-Payload

Cryo-Payload installed, Also sapphire test bulk is cooling-down ~15K.

2G(第2世代)レーザー干渉計型重力波検出器

http://rhcole.com/apps/GWplotter/

arXiv:1304.0670

to be submitted to Living Reviews in Relativity

地下へ潜ろう!

なぜ地下なのか?

安定、静謐な環境

バックグラウンドの軽減

		素粒子実験	共通要素	重力波検出	
外部環境	地上	宇宙線 放射性物質 民生装置の電磁波	温度変化(大) 気圧変化 人工物、人の活動	地面振動(大) : 天然、人工由来 重力勾配揺らぎ	
	地下	宇宙線(少、高エネµ) 放射性物質	温度変化(小) 気圧変化(?) 湿度(大)	地面振動(小) 重力勾配揺らぎ(小)	
装置内部		装置・資料の含む放射 性物質など	電気回路	熱雑音 レーザー量子雑音	

地面振動と重力波検出器

神岡鉱山内と三鷹の地面振動比較

TAMA300, 2001/8/21の検出 レンジ履歴。夜間や12:00-13:00 の間は感度が良くなっている。

重力波検出の将来は地下にある!?!

2G ==> 3G

KAGRAは2.5G(第2.5世代検出器) 感度では2G。aLIGO, aVirgoと同世代 3Gに必要な要素が採用されている: - 地下サイト - 低温鏡 サファイヤ 3G (第3世代検出器) 静謐で安定な地下サイト

低温鏡 *ただし、基材、温度についてはいろいろ

長基線 10~40km

以上をもって、2Gより一桁感度を改善する。 z >10 の宇宙を見る。

第3世代(3G)検出器の感度

http://rhcole.com/apps/GWplotter/

第3世代(3G)検出器の感度

http://rhcole.com/apps/GWplotter/

Einstein Telescope

EGO(European Gravitational Observatory)の第3世代 検出器計画

ー辺10km の三角形トンネ ル

→基線長10kmの干渉計3

地下サイト

ETT EINSTEIN TELESCOPE

http://www.et-gw.eu/index.php

ET design

input power (after IMC)	000 W	3 W
Arm power	$3\mathrm{MW}$	$18\mathrm{kW}$
Temperature	$290\mathrm{K}$	$10\mathrm{K}$
Mirror material	Fused silica	Silicon
Mirror diameter / thickness	$62\mathrm{cm}~/~30\mathrm{cm}$	min $45\mathrm{cm}/\mathrm{TBD}$
Mirror masses	$200\mathrm{kg}$	$211\mathrm{kg}$
Laser wavelength	$1064\mathrm{nm}$	$1550\mathrm{nm}$
SR-phase	tuned (0.0)	detuned (0.6)
SR transmittance	10%	20%
Quantum noise suppression	freq den squeez	fred den saueez

Cosmic Explorer

米国の将来計画 CEより前に、 advanced LIGOのさらに アップグレード であるLIGO+, Voyagerも計 画されている。

基線長 40km

地下

Class._Quantum_Grav._34_044001.

トンネル?溝?どちらにしろ、両端と中央の高低差、両端の鉛直方向が平行でない。

CE design

	CE	CE pess	ET-D (HF)	ET-D (LF)
$L_{ m arm}$	40 km	40 km	10 km	10 km
Parm	2 MW	1.4 MW	3 MW	18kW
λ	1550 nm	1064 nm	1064 nm	1550 nm
r _{sqz}	3	3	3	3
m _{TM}	320 kg	320 kg	200 kg	200 kg
<i>r</i> _{beam}	14 cm	12 cm	9 cm	7 cm (LG ₃₃)
Т	123 K	290 K	290 K	10 K
ϕ_{eff}	$5 imes 10^{-5}$	$1.2 imes 10^{-4}$	$1.2 imes 10^{-4}$	$1.3 imes 10^{-4}$

これからの重力波観測による研究

基礎物理 相対性理論の検証 ブラックホールの物理 天体物理・宇宙物理 大 質 量 BHおよび BBHの 起 源 中性子星の物理 超新星爆発の物理

マルチメッセンジャーの一翼としての役割

相対論の検証

GW150914 BH準固有振動解析 (この解析ではKerr BHのパラメーターを求 めているが、Schwarzschild BHと有為な差 がつかない。)

Phys. Rev. Lett. 116, 221101

 → もっと大きなS/Nのイベントが望まれる。
 =地球の近傍で起きるか、検出器の感度を良 形成
 くするか。

形成されたBHの準固有振動を仮定しての解析。 1,3,5,6.5ms は、連星合体を基準にBH準固有振 動開始を仮定する時刻。

GW150914 + GW151226でのポスト=ニュートン波形パラメーターの検証

重力波はBBHの起源に迫れるか?

可能性:

Pop III, Dynamical formation, Primordial BH, それ以外?

z の大きなイベントの観測が決め手

数が必要

PTEP 2016, 093E01

KAGRAやLIGOの最終感度では、 BBH質量分布からPopIII起源を肯 定できるかもしれない。 A.Miyamoto et.al., PRD in press

そのほかの重力波の観測は?

にわかにコメントすることは難しいが、十分期待が持てる波源はある。

中性子星連星(NS-NS)の合体

発見は時間(感度達成)の問題だろう。

中性子星ーブラックホール連星(NS-BH)?

あるかどうかわからない。形成しにくいのではないかという研究もある。 NS-NS,NS-BHはEM追観測が期待できるから、発見されれば大いにブレイクスルーをもたらすだろう。

超新星爆発

運を天に任せて…

超新星爆発も、micro physics と相対論を取り入れた数値シミュレーション研究が進んでいる。 1 イベント でも受かれば相当なインパクトがある。

重力波ーニュートリノの同時観測も期待できる。

連続波(パルサー、LMXB)	Epoch		2015-2016	2016-2017	2018-2019	2020+	2024+
	Planned run duration		4 months	9 months	12 months	(per year)	(per year)
背景重力波		LIGO	40-60	60-75	75-90	105	105
	Expected burst range/N	Apc Virgo		20 - 40	40 - 50	40 - 70	80
		KAGRA	_				100
		LIGO	40-80	80-120	120 - 170	190	190
	Expected BNS range/N	Apc Virgo	_	20 - 65	65-85	65-115	125
		KAGRA					140
		LIGO	60-80	60-100			
	Achieved BNS range/N	Apc Virgo		25-30			
		KAGRA			—		
orViv:1204.0670	Estimated BNS detections		0.002-2	0.007-30	0.04 - 100	0.1-200	0.4 - 400
	Actual BNS detections		0				
	90% CR [%] within mediat	5 deg^2	< 1	1-5	1-4	3-7	23 - 30
		20 deg^2	< 1	7 - 14	12-21	14 - 22	65 - 73
		nedian/deg ²	460-530	230 - 320	120 - 180	110 - 180	9 - 12
	Saarahad araa 07 w	5 deg^2	4-6	15-21	20-26	23-29	62-67
		20 deg^2	14-17	33-41	42-50	44-52	87-90
al /\lv.1304.0070							

もう一つの解:宇宙へ

DECIGOの可能性

Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes

Takashi Nakamura¹, Masaki Ando^{2,3,4}, Tomoya Kinugawa⁵, Hiroyuki Nakano^{1,*}, Kazunari Eda^{2,4}, Shuichi Sato⁶, Mitsuru Musha⁷, Tomotada Akutsu³, Takahiro Tanaka^{1,8}, Naoki Seto¹, Nobuyuki Kanda⁹ and Yousuke Itoh⁴ (まとめに代えて)多波長の重力波

http://rhcole.com/apps/GWplotter/

LIGO's Future Plan

LIGO Upgrade Timeline

The LSC-Virgo White Paper on Instrument Science (2016-2017 edition)

Detector Sensitivity VS Range

Interesting target for three reasons:

Nakano Talk

Inspiral and ringdown phases have roughly equal SNRs, so provides good test of GR

If population III stars (formed at redshifts 5-10) exist, these might be a substantial fraction.

Perhaps we will detect several of them in the first aLIGO data run O1, this September!

Osaka 20.6.2015

viewgraph edited by Bruce Allen : (Personal) summary of new, novel, and interesting results presented at this workshop at GWPAW2015 Osaka, June 2015 37