

吉田 斉 大阪大学大学院理学研究科

シンポジウム「地下実験による宇宙・素粒子:原子核研究」 日本物理学会2017年秋季大会 2017年9月12日 @ 宇都宮大学

- β崩壊がエネルギー的に禁止されている、もしくはスピン遷移則で強く抑制 される → 二重ベータ崩壊(<u>ββ</u>)崩壊
 - ββ崩壊核種は多くある

- Ονββの発見が意味すること
 - レプトン数非保存過程
 - 粒子数保存則の破れ
 - ニュートリノ → マヨラナ粒子
 - 重い(右巻き)ニュートリノを自然に導入可能
 - → シーソー機構により、微小なニュートリノ質量を説明が可能
 - 重いニュートリノの崩壊
 - ← CPの破れを要求 (レプトジェネシスシナリオ)

物質優勢の宇宙

- ニュートリノ質量の絶対値(理論的不確かさはあるが)

 - 質量階層型の決定

$$T_{0v}^{-1} = G_{0v}(Q_{\beta\beta},Z) |M_{0v}|^2 < m_v > 2$$

質量項の場合

有効Majorana質量の予測

Ovßß実験の感度(核種)

- 崩壊核の選択
 - → Ονββ 崩壊率を大きく

$$T_{0v}^{-1} = G_{0v}(Q_{\beta\beta},Z) |M_{0v}|^2 < m_v > 2$$
 (Mass term)

- 核種の特徴
 - <u>Q値</u>
 - Phase space
 - 自然存在比(もしくは濃縮度)
 - <u>核行列要素</u>
 - <u>価格</u>

核行列要素 (NME)

ββ核種の選択(まとめ)

核種	Q値 (MeV)	(%)	Cost ※ (M\$/ton)	T _{1/2} ^{0v} (x 10 ²⁵ yr)	実験計画
⁴⁸ Ca → ⁴⁸ Ti	4.263	0.187	1000 <	0.0058 (CANDLES)	CANDLES
⁷⁶ Ge → ⁷⁶ Se	2.039	7.6	~ 80	2.1 (GERDA)	GERDA, MAJORANA
⁸² Se → ⁸² Kr	2.998	8.7	~ 120	0.036 (NEMO-3)	Super-NEMO
⁹⁶ Zr → ⁹⁶ Mo	3.356	2.8			ZICOS
¹⁰⁰ Mo → ¹⁰⁰ Ru	3.034	9.6	~ 80	0.11 (NEMO-3)	AMORE
¹¹⁶ Cd → ¹¹⁶ Sn	2.813	7.5	~ 180	0.017 (Solotovia)	COBRA,
¹²⁴ Sn → ¹²⁴ Te	2.228	5.64	~ 300		
¹³⁰ Te → ¹³⁰ Xe	2.527	34.5	20	0.40 (<i>C</i> UORE-0)	CUORE \rightarrow CUPID, SNO+
¹³⁶ Xe → ¹³⁶ Ba	2.458	8.9	5 ~ 10	11 (KamLAND-Zen)	KamLAND-Zen, EXO(nEXO), NEXT, PANDAX-III, AXEL
$^{150}Nd \rightarrow ^{150}Sm$	3.371	5.6	300 <	0.0018 (NEMO)	DCBA(MTD)

※ A. Barabash, J of Phys. G: Nucl. Part. Phys. 39 085103 (2012) 参照

検出器側では、感度は<u>Backgroundがあると一般的に</u>

 $< m_{v} > \propto T_{0v}^{-1/2} \propto (N_{BG} \cdot \Delta E / M \cdot T_{live})^{1/4}$

- 大容積 (M ~ Large)
 - 自然存在比/濃縮
- 低Background (N_{BG} ~ Small)
 - 高純度材料→ 検出器、遮蔽、地下実験室
 - Large $Q_{\beta\beta}$
 - 2νββの影響に関しては
 - エネルギー分解能 (ΔE ; Good)、小さい2vββ崩壊率
- その他にも… (T_{live} ~ Long)
 オペレーション容易

Ovbb崩壊の検出方法

2vßß decay:
 Q_{ββ}値をEnd pointに連続成分
 Ovßß decay ;

<u>Calorimetric法</u>

その他にも...

- 2本のElectron ; <u>Tracking</u>
- ・ 娘核種が生成;<u>Tagging</u>
- <u>Spectroscopic</u> にOvßßと2vßßを分離
 他に必要なことは…

エネルギー分解能とOvββのBG

日本物理学会2017年秋季大会@宇都宮大学

現状と将来

個々の実験計画すべて細かく見ていく時間はない

日本物理学会2017年秋季大会@宇都宮大学

Experiments using ¹³⁶Xe

日本物理学会2017年秋季大会@宇都宮大学

¹³⁶Xe Experiments using

¹³⁶Xeの利点

- Q值 (2.46MeV)
 - 208 TI γ線エネルギー2.6 MeVのComptonエッジとPeakの間

常温でガス

- → 同位体濃縮が容易
- 同宿度90%以上のガスが比較的安価で入手可能

→ 純化が可能

- 純化技術も多様 (Filter, getter, 蒸留 etc.)
- 建設後・測定中にも再純化可能
- 2vbb崩壊の半減期が長い(~2×10²¹ yr)
 - 避けられないBGが少ない

長寿命の放射性同位元素がない

日本物理学会2017年秋季大会@宇都宮大学

2017/9/12

¹³⁶Cs

¹³⁶Xe崩壞図

EXO-200

¹³⁶Xe

TPC

@WIPP

Majorana demonstrator

⁷⁶Ge

HPGe

@Sanford

0

SNO+

Te-LS

@SNOLAB

¹³⁰Te

¹³⁶Ba

¹³⁶Xe

 Q_{BB} = 2.46MeV

ND-Zen

Хе

LS

nioka

 $T_{1/2} \sim 2 \times 10^{21} \text{ yr}$

KamLAND-Zen実験

● ¹³⁶Xeを溶解した液体シンチレータ

<u>稼働中高感度大型検出器の利用</u>

- 迅速に実験開始
- (極低)BG、検出器性能が良く理解済
- 大型化(トンスケール)の可能性

Made of 25-um-thick clean nylon by welding (no glue) at class-1 clean room

KamLAND-Zen実験

EXO実験

@WIPP (~1600 m.w.e), NM

- Liquid Xe TPC : 175kgの液体¹³⁶Xe (80.6%濃縮)
- 検出原理 (2種類の検出器によるSignal / BG区別)
 - Ionizationで生成したe-を観測 (TPC): → Single / Multi反応を区別
 - シンチレーション光観測 (LAAPD) → Energy測定、a粒子の区別

EXO実験

@WIPP (~1600 m.w.e), NM

- Liquid Xe TPC : 175kgの液体¹³⁶Xe (80.6%濃縮)
- 検出原理 (2種類の検出器によるSignal / BG区別)
 - Ionizationで生成したe-を観測 (TPC): → Single / Multi反応を区別
 - シンチレーション光観測 (LAAPD) → Energy測定、a粒子の区別

最近の結果

- Phase I + II (177.6 kg·yr exposure)
- $T_{1/2} > 1.8 \times 10^{25}$ yr (Sensitivity of 3.7×10^{25} yr)

arXiv:1707.08707

@WIPP (~1600 m.w.e), NM

EXO実験

EXO実験

• 将来計画

- nEXO:~5トンの液体キセノン検出器.
- 4.7 tons of active ^{enr.}Xe (90% or higher), < 1.0% (σ /E) energy resolution.
- 目標感度 ~ 10²⁸ yrs (~20 meV)
- 更に将来は、¹³⁷Baタギングを導入してBGフリーを目指す。

@WIPP (~1600 m.w.e), NM

将来実験 High Pressure Xe TPC

Experiments using ⁷⁶Ge

日本物理学会2017年秋季大会@宇都宮大学

Experiments using ⁷⁶Ge

- <u>⁷⁶Ge実験の特徴</u>
 - Q值 (2.039MeV)
 - BB核種の中ではQ値は低め
 - Ge半導体検出器を使用
 - 高エネルギー分解能 ΔE ~ a few keV (@Q値)
 - 高純度 → 低BG測定
 - 濃縮同位体が利用可能
 - 同位体濃縮度90%以上
 - 2vββ崩壊の半減期が長い (~2×10²¹ yr)
 - T1/2 = $(1.84 + 0.14 0.10) \times 10^{21} \text{ yr}$

日本物理学会2017年秋季大会@宇都宮大学

Ge実験の将来計画

2017/9/12

Experiments using ¹³⁰Te

日本物理学会2017年秋季大会@宇都宮大学

Experiments using ¹³⁰Te

CUORE検出器の概要

- TeO2結晶が988個: 742 kg (206 kg of ¹³⁰Te)
- ~1 tonの結晶と遮蔽体(Pb)を極低温(~10 mK)に冷却 → 温度上昇を測定
- 検出器性能

日本物理学会2017年秋季大会@宇都宮大学

- CUORE検出器の概要
 - TeO₂結晶が988個:742 kg (206 kg of ¹³⁰Te)
 - ~1 tonの結晶と遮蔽体(Pb)を極低温(~10 mK)に冷却 → 温度上昇を測定
 - 検出器性能
 - ▲E = 5 keV FWHM(平均 10 keV)

- CUORE検出器の概要
 - TeO₂結晶が988個:742 kg (206 kg of ¹³⁰Te)
 - ~1 tonの結晶と遮蔽体(Pb)を極低温(~10 mK)に冷却 → 温度上昇を測定
 - 検出器性能
 - ▲E = 5 keV FWHM(平均 10 keV)
 - BG Rate : 10⁻² c/(keV·kg·yr)
 - 予冷(⁴He gas+PTR冷凍機5台) → ~4K
 - 無冷媒式希釈冷凍機(パワー:3µW@10mK)
 - 重量
 - 総重量(右図) ~30 tons
 - 4 K以下の総重量:~15 tons
 - 50 mK以下の総重量: ~3 tons (Pb, Cu and TeO2)
 - CUORE projected sensitivity
 - T_{1/2} > 9 × 10²⁵ yr (5 years, 90% C.L.)

- CUORE実験の現状
 - 2016.8月末: 検出器Construction完了
 - 2017.1.27:検出器温度~7 mK到達 (← 2016.12.5 室温から冷却開始)
 - 2017.4.14 Science operations開始
 - Dataset 2: 2回のCalibrationを挟んで3週間の物理Run (May 4 June 11)
 - nat TeO₂ exposure: 38.1 kg yr (¹³⁰Te exposure: 10.6 kg yr)
 - 運転状況:
 - 運転温度:15 mK
 - TeO2結晶:984/988が利用可能(CUORE-0から大きく改善)

CUORE実験の現状

- 2016.8月末:検出器Construction完了
- 2017.1.27:検出器温度~7 mK到達 (← 2016.12.5 室温から冷却開始)
- 2017.4.14 Science operations開始
 - Dataset 2: 2回のCalibrationを挟んで3週間の物理Run (May 4 June 11)
 - natTeO2 exposure: 38.1 kg yr (130Te exposure: 10.6 kg yr)

CUORE実験の現状

- 2016.8月末:検出器Construction完了
- 2017.1.27:検出器温度~7 mK到達 (← 2016.12.5 室温から冷却開始)
- 2017.4.14 Science operations開始
 - Dataset 2: 2回のCalibrationを挟んで3週間の物理Run (May 4 June 11)
 - nat TeO2 exposure: 38.1 kg yr (130 Te exposure: 10.6 kg yr)

- SNO-Lab. @カナダサドバリー
 - 地下2000 m 世界最深のニュートリノ検出器
 - 宇宙線起因BGが極小(^{10,11}Cなど)
- 液体シンチレータ (LS) 実験
 - SNO実験のアクリル容器、PMTを再利用
 - 光量 ; 50倍以上
 - 低エネルギーに特化した物理実験が可能
- 3.9トン ^{nat}Te溶解LS
 - 780トンLS (LAB+PPO+Te-ButaneDiol)
 - 0.5% loading \rightarrow 1300 kg ^{130}Te
 - FV = 3.5 m (20%)
- SNO+の現状
 - LS製造・純化ラインはコミッショニング中
 - Telluriumプラント建設中
 - Οvββ Phaseは2018年末に開始予定
- SNO+目標感度
 - 2 × 10²⁶ yr (after 5 year, 90% CL)
 - $m_{\beta\beta} \approx 40 90 \text{ meV}$

<u>SNO+実験概念図</u>

直径12 mのアクリル容器 PMT 9500本 水シールド 1700 ton

- Οvββ Phaseは2018年末に開始予定
- SNO+目標感度
 - 2 × 10²⁶ yr (after 5 year, 90% CL)
 - $m_{\beta\beta} \approx 40 90 \text{ meV}$

日本物理学会2017年秋季大会@宇都宮大学

直径12 mのアクリル容器 PMT 9500本 水シールド 1700 ton

Experiments using ⁴⁸Ca

- <u>48Ca実験の特徴</u>
 - Q值 (4.263MeV)
 - ββ各種の中で最大
 - Large phase space factor
 - BG耐性が良い

@Modane

- γ-ray ; 2.6 MeV (²⁰⁸Tl)
- β-ray ; 3.3 MeV (²¹⁴Bi)
- 自然存在比が小さい:0.187%
 - 濃縮同位体は極少量(Commercial)、超高価
 - Ca原料は安価であるため、濃縮が可能になると飛躍 的に感度向上

日本物理学会2017年秋季大会@宇都宮大学

China

PandaX-III

¹³⁶Xe

High-P TPC

@Jin Ping

CANDLES Experiment

CANDLES-III 検出器を神岡地下にInstall、運転中

Highest Q-valued

- $CaF_2 = \overline{V} \overline{V}$ •
 - CaF₂(Pure)結晶 96個; 305 kg
 - 波長変換層: 280 nm → 420 nm
 - 厚み:5mm
 - Mineral Oil+bis-MSB (0.1 g/L)

4π Active shield

- 液体シンチレータ (LS)
 - 直径1.37 m x 高さ1.4 m
 - 容量:2.1 m³ (1.65 ton)
 - 成分
 - 溶媒: Mineral Oil(80%)+PC(20%)
 - 溶質;PPO (1.0g/L) + bis-MSB (0.1g/L)
- PMTs + ライトパイプ
 - 13 inch (側面) ; x 48本
 - 20 inch (上下面); x 14本
 - 反射Film: 反射効率~93%
- Toward "Background Free Measurement"
 - Designed the shields \rightarrow finished the construction.
 - Lead Bricks (10 ~ 12 cm thick)
 - Boron loaded sheet

Installed in 2016

- Number of BG after shield installation estimated
 - Rock: 0.34±0.14 event/year
 - Tank: 0.4±0.2 event/year

同様に、個々の実験計画すべて細かく見ていく時 間はない

日本物理学会2017年秋季大会@宇都宮大学

Ovßß探索:今後の戦略

Scintillating Bolometerの原理

- Scintillating Bolometerの原理
 - 熱量に加え、蛍光量も同時に測定することで、蛍光のα線クエンチング効果を 用いたα/β粒子識別を行う

Heat (Phonon)

sensor

- Phonon → 高エネルギー分解能
- Senser(Thermister)の選択
 - Thermistors (NTD-Ge)
 - TES (Transition Edge Sensor)
 - MMC (Metallic Magnetic Calorimeter)
 - KID (Kinetic Inductance Device)

• etc.

日本物理学会2017年秋季大会@宇都宮大学

Light (Scintillation)

sensor

CUORE Upgrade : CUPID

CUORE検出器を改良

- Option1: Scintillating-Bolometer (Zn⁸²Se / Li₂¹⁰⁰MoO₄)
- Option2: TeO₂ + Light-detector (PI by Cherenkov photon)

- 2018年末までにtonスケールの検出器の可否を検証
- CUORE終了後にStart(2023年)
 - 最終感度 → <mpp>= 10-15 meV

CUORE Upgrade : CUPID

CUORE検出器を改良

- Option1: Scintillating-Bolometer (Zn⁸²Se / Li₂¹⁰⁰MoO₄)
- Option2: TeO₂ + Light-detector (PI by Cherenkov photon)

- 現在R&Dの最中
 - 2018年末までにtonスケールの検出器の可否を検証
- CUORE終了後にStart(2023年)
 - 最終感度 → <mbb>= 10-15 meV

AMORE Advanced Mo based Rare process Experiment

- Site: YangYang地下実験施設(韓国,地下700m)
- ββ Isotope: ¹⁰⁰Mo (Q值 = 3034 keV, 9.63%)
 - 有望核種の一つ
 - 濃縮同位体も利用可
- 検出器: ⁴⁰Ca¹⁰⁰MoO4</sup> Scinti-Bolometer検出器
 - ⁴⁰Ca高騰 → Another Crystal ?
- Phononセンサー: MMC 高エネルギー分解能
 - AMoRE-Polot -2017
 - 1.5kg, $T^{0v_{1/2}}$ > 3 × 10²⁴ year,
 - m_{ββ} < 300~900 meV
 - AMoRE-I 2017-2019
 - 5kg, 10⁻³ cts/(keV·kg·y)、70-140meV AMoRE-II 2020-2025@新実験室
 - 200kg, BG=10⁻⁴ cts/(keV·kg·y)
 - 最終目標値: mpp < 12-20 meV (T^{ov}1/2 > 1.1 × 10²⁷ year)

AMoRE実験

AMoRE実験の現状

- AMoRE Pilot (5 crystal)
- YangYang地下実験室にInstall、運転中.
- Total mass ~ 1.8 kg

Yong-Ham Kim, LTD-17@Kurume

- 熱量に加え、蛍光量も同時に測定することで、蛍光のα線クエンチング効果を用いたα/β粒 子識別を行う
- 主なBackgroundである²³⁸Uのa崩壊事象(Q値=4.27MeV=0vββ崩壊のQ値)を排除可能

CANDLES将来計画

Ovbb発見後の戦略

$$[T_{1/2}^{0\nu}(\nu)]^{-1} = G^{0\nu} |M^{0\nu}|^2 (\langle m_{\nu} \rangle^2 + C_{\lambda\lambda} \langle \lambda \rangle^2 + C_{\eta\eta} \langle \eta \rangle^2 + C_{m\lambda} \langle m_{\nu} \rangle \langle \lambda \rangle + C_{\lambda\eta} \langle \lambda \rangle \langle \eta \rangle + C_{m\eta} \langle m_{\nu} \rangle \langle \eta \rangle)$$

<u>Tracking法の特徴</u>

- 2本のTrackの同定が可能
 - → BG除去能が高い
- 同検出器で別の核種が測定可
- エネルギー・角相関を測定
 → Mechanism解明

Super-NEMO実験

Tacking detector

- Modane(フランス)
- NEMO-3実験が成功
- ⁸²Se, ~7kg/module(Total 100kg)
- 2018年にDemonstratorが実験開始予定
 - エネルギー分解能: 8% FWHM @1MeV
 - 感度:4.5x 10²⁴ yr (0.20 ~ 0.40 eV)

17.5 kg·yr initial exposure (2.5 yr)

Super-NEMO実験

Tacking detector

- Modane(フランス)
- NEMO-3実験が成功
- ⁸²Se, ~7kg/module(Total 100kg)
- 2018年にDemonstratorが実験開始予定
 - エネルギー分解能: 8% FWHM @1MeV
 - 感度:4.5x 10²⁴ yr (0.20 ~ 0.40 eV) 17.5 kg•yr initial exposure (2.5 yr)
- Super-NEMO
 - 目標到達感度:10²⁶ y (m_{pp}: 50 100 meV)

まとめ

●世界中で測定、R&Dが活発に進行中