2017/09/14 物理学会 シンポジウム「大規模電波観測が切り開く宇宙物理学」

大規模電波サーベイによる宇宙論

宇宙論的観測手法

≻宇宙マイクロ波背景輻射 → 電波

- ≻宇宙大規模構造
 - バリオン音響振動
 - 赤方偏移方向歪み
 - ・ 重力レンズ効果

→可視·光赤外

電波域の宇宙論: 可視域宇宙論と相補的!

大規模電波観測によって目指す 科学目標

- ◆ 基礎物理:重力,暗黒エネルギー, 原始宇宙,宇宙磁場,+...
- ◆ 宇宙物理:宇宙の夜明け,最初の銀河, 銀河進化,+...
- ◆ 未知 : 突発天体 + ...

P Dark Energy

大規模電波観測によって目指す 科学目標

◆ 基礎物理 : **重力, 暗黒エネルギー, 原始宇宙**, 宇宙磁場, +...

 ◆ 宇宙物理:宇宙の夜明け,最初の銀河, 銀河進化,+...

◆ 未知 : 突発天体 + ...

Dark Energy

- ▶中性水素(HI)の超微細構造線
- ≻波長:21cm
- > 中性水素は主に銀河内に存在

HI21cm線は、宇宙の3次元構造の (バイアスされた)トレーサーとして使える!

- ➢ HI [21cm線]サーベイ
 - 「✓ HI銀河赤方偏移サーベイ
 - 21cm線のラインから赤方偏移を推定することで3次元地図構成。
 - ✓ HI強度マッピングサーベイ [after CD/EoR]
 - 個々の銀河の特定をせず、低い分解能で銀河からの後者を 連続的に掃天。[Chang+(2010)]
 - 比較的低い感度レベルで達成可能。大きな観測体積を掃天。
 - ✓ HI強度マッピングサーベイ [before CD/EoR]
 - 再電離期・夜明けのIGM内の中性水素分布の構造がターゲット。
 再電離期以前の物質の揺らぎをトモグラフィー可能。

> 電波連続波サーベイ

- 銀河からのシンクロトロン放射を大規模構造のトレーサーとして測定。
- これまでも行われてきたが、次世代においては宇宙論的に十分な数の ソースを観測できる。

SQUARE KILOMETRE ARRAY

- ✓ これまでにない周波数 領域
- ✓ 広視野
- ✓ 高空間分解能
- ✓ 高感度

観測量	サーベイ	SKA Phase	赤方偏移	<i>掃天</i> (deg²)	観測 銀河数
НІ	HI <i>銀河赤方</i> <i>信我サーベイ</i>	Phase-1	z<0.8	5,000	~ 107
[21cm線]	יאיז (gal)	Phase-2	z<2	30,000	~ 10 ⁹
НІ	HI <u>強度マッピ</u>	Phase-1	z<3	25,000	
[21cm線]	ンクサーヘイ (MID-IM)	Phase-2	z<3.7	30,000	
НІ	HI強度マッピ	Phase-1	3 <z<27< th=""><th>1,000</th><th></th></z<27<>	1,000	
[21cm線]	ングサーベイ (LOW-IM)	Phase-2	3 <z<27< th=""><th>30,000</th><th></th></z<27<>	30,000	
シンクロトロン	電波連続線	Phase-1	z<6	25,000	~ 10 ⁸
放射	サーベイ (conti)	Phase-2	z<6	30,000	~ 10 ⁹
可視域	e.g. <i>Euclid</i>		z<2	15,000	~ 10 ⁸

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta \theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr]

観測量	サーベイ	SKA Phase	赤方偏移	<i>掃天</i> (deg²)	観測 銀河数
НІ	HI <i>銀河赤方</i> 信我サーベイ	Phase-1	z<0.8	5,000	~ 107
[21cm <i>線</i>]	Mm Aタリーベイ (gal)	Phase-2	z<2	30,000	~ 10 ⁹
HI [21cm <i>線</i>]	HI強度マッピ	Phase-1	z<3	25,000	
	ンクサーヘイ (MID-IM)	Phase-2	z<3.7	30,000	
HI [21cm <i>線</i>]	HI強度マッピ	Phase-1	3 <z<27< th=""><th>1,000</th><th></th></z<27<>	1,000	
	ンクサーベイ (LOW-IM)	Phase-2	3 <z<27< td=""><td>30,000</td><td></td></z<27<>	30,000	
シンクロトロン	電波連続線	Phase-1	z<6	25,000	~ 10 ⁸
放射	#-~1	hase-2	z<6	30.000	~ 10 ⁹
可視域 Phase-1であってもIM/contiならば十分 ~ 10 ⁸					
大きなサーベイ体積[全天+high-z]を持つ!					

観測量	Phase	e-2では最 銀河	終的に ~1 「の位置を	0億個(! 特定	もの
НІ	HI銀河亦力	1 11	/ z<0.8	5,000	~ 10/
[21cm <i>線</i>]	עד איז	Phase-2	z<2	30,000	~ 10 ⁹
ні	HI強度マッピ	Phase-1	z<3	25,000	
[21cm <i>線</i>]	ンクサーヘイ (MID-IM)	Phase-2	z<3.7	30,000	
ні	HI強度マッピ	Phase-1	3 <z<27< th=""><th>1,000</th><th></th></z<27<>	1,000	
[21cm <i>線</i>]	ンクサーベイ (LOW-IM)	Phase-2	3 <z<27< th=""><th>30,000</th><th></th></z<27<>	30,000	
シンクロトロン	電波連続線	Phase-1	z<6	25,000	~ 10 ⁸
放射	サーベイ (conti)	Phase-2	z<6	30,000	~ 10 ⁹
可視域	e.g. Euclid		z<2	15,000	~ 10 ⁸

S = 70(SKA1gal), 5(SKA2gal), 1(SKA1cont), 0.1(SKA2cont) [µJy] $\Delta\theta$ = 1(SKA1), 0.1(SKA2) [arcsec], t_{int} = 10⁴ [hr] [Bull+ 1405.1452,SKA Science Book(BAO) (2015)]

揺らぎの精密観測

- ✓ gal, MID-IM : Euclidに比肩する 決定精度(BAO, RSD)
- ✓ conti : z情報得られないが、 high-zまで観測可能
- ✓ LOW-IM:小スケールまで線形 領域でクリーンな予言が可能 [再電離研究との協働が必須]

[SKA Phase 1 Science Priority Outcomes]

宇宙論のキーサイエンス: 重力のテストと原始非ガウス性

Science Goal	SWG	Objective	SWG Bank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

"Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales"

Plan

1. イントロダクション

- 2. 大規模電波サーベイによる宇宙論I: 暗黒エネルギーと一般相対論の検証
- 3. 大規模電波サーベイによる宇宙論II: インフレーション宇宙
- 4. まとめ

大規模電波サーベイによる宇宙論 I: 暗黒エネルギーと一般相対論の検証

[Planck XIV(2013)]

暗黒エネルギーの性質の解明

[Planck XIV(2013), SKA Science Book(BAO) (2015), Bull (2016)]

暗黒エネルギーの性質の解明

[Planck XIV(2013), Kohri+Oyama+Sekiguchi+T.Takahashi(2016)]

我亦国仁去る其前 再電離期21cm線による探査

暗黒エネルギー状態方程式への制限

[Kohri+Oyama+Sekiguchi+T.Takahashi(2016)]

我的国际去る属制 再電離期21cm線による探査

暗黒エネルギー状態方程式の時間発展依存性による違い

[Kohri+Oyama+Sekiguchi+T.Takahashi(2016)]

我为福利一步多属制 再電離期21cm線による探査

暗黒エネルギー状態方程式の時間発展依存性による違い

[Bull(2016), SKA Science Book(RSD) (2015)]

一般相対論の検証

[Bull(2016), SKA Science Book(RSD) (2015)]

一般相対論の検証

[DY+S.Yokoyama+Tashiro (2017)]

般相対論のさらなる検証可能性

我亦国仁去る其前 成長指数だけでは一般相対論と縮退するモデルが存在

→ 将来電波サーベイではこれらを峻別可能!

大規模電波サーベイによる宇宙論 II: インフレーション宇宙

インフレーション宇宙の理解の現状

ᢎ測予 原始曲率揺らぎ → スケール不変からのわずかなズレ(5 σ) $P_{\tau}(k) \propto k^{-0.04+...}$ [WMAP, Planck,...]

原始重力波 → 原始曲率揺らぎの10%以下 [Planck]
[future : LiteBIRD → 0.1%]

◆
 ケ
 「
 「
 はば」
 ガウス分布 [Planck]

✓ ガウス分布からのズレをパラメータ化

:非線形パラメータf_{NL} [Komatsu+Spergel (2001)]

[Kohri+Oyama+Sekiguchi+T.Takahashi (2013)]

我亦国二よる属樹 原始曲率揺らぎの精密測定

[Oyama+Kohri+Hazumi (2016), Oyama+Kohri+Shimizu (2013)]

ニュートリノの性質の解明

密度揺らぎの精密測定 → ニュートリノを含む素粒子の性質の探査が可能に!

我亦用儿子子是開

HI強度マッピングサーベイ [6.8<z<10]

原始非ガウス性

▶スケール依存する銀河バイアス:

 $P_{gal} = [b_1(M,z) + f_{NL}\beta_f(M,z)/k^2D_+(z)]^2 P_{\delta}$

[**DY+K.Takahashi** (2015)]

整合性条件とその破れ

[**DY+K.Takahashi** (2015)]

整合性条件とその破れ

戦す 戦が 一手 揺らぎの生成機構の詳細に迫る

→銀河バイスペクトル解析 → 原始宇宙の多様な情報を含む!

[DY+S.Yokoyama+K.Takahashi (2016)]

✓ 正三角形型:音速に敏感

✓ 直交型:真空状態に敏感

[DY+S.Yokoyama+T.Takahashi in prep.]

まとめ

X

▷ 次世代の低周波電波サーベイでは宇宙論に適した 多様なサーベイを行うことが出来る

様々なシナジーが期待できる:
 CMB観測とのシナジー: delensing

[Namikawa+DY+Sherwin+Nagata (2015)]

3多波長銀河サーベイとのシナジー:shear

素粒子模型への示唆:lepton asymmetry, v,...

[Kohri+Oyama+Sekiguchi+T.Takahashi (2014)]

Thank you!