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Pulsar is an ideal clock

Binary pulsar can be used to 
test GR
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Periastron time shift due to GW emission

GR prediction

PSR B1913+16
Hulse-Taylor binary

(dPorb/dt)/ (dPorb/dt)GR

=0.9983±0.0016

Indirect evidence of GW emission

Hulse and Taylor were awarded Nobel prize in 1993

• GW emission was confirmed but its propagation was not. 
• It is still uncertain if the GW propagation is as expected. 

(J.M. Weisberg and Y. Huang arXiv:1606.0274)
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>2500 pulsars are known in the Galaxy
About 10% of pulsars are binaries, which are mostly recycled.
Precise mass measurement for ～35 neutron stars

As for already known pulsars:
SKA1-MID 

will improve the timing precision by an order of magnitude
SKA2

will improve it by up to two orders of mangitude

As for discovery:
Higher sensitivity makes the acceleration search more effective.
SKA1

will find 1800 millisecond pulsars
SKA2

will find even more and may have pulsar-BH binaries
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Keplerian parameters:
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Post-Keplerian parameters:

advance perihelion:

 orbits ccentricfor  redshift nalgratibatiodelay  Einstein:  

decay period orbital:bP

     case on edgefor t significandecay  timeShapiro:shape,range sr

Constraint on mass: 
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precession spin:
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Mass-mass diagram of PSR J0737-3039A/B

Masses are fixed 
by the Keplerian
parameters
⇒ 5 independent 
tests of GR using 
post-Keplerian
parameters

Double pulsar

(Kramer et al. 2006)
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Masses of Double Neutron Star Systems and Non-recycled pulsars

(arXiv:1603.02698)
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Masses of Milisecond Pulsars

Famous 2solar mass NS found by 
Antoniadis et al. discovered in 2007. 
Radio observation aided by precise 
spectroscopy of the WD companion

Triple system: Outer WD orbital 
period is < 1year.

Radio observation aided by precise 
spectroscopy of the WD companion

(arXiv:1603.02698)
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Motivation for modified gravity
1) Incompleteness of General relativity

2) Dark energy problem

GR is non-renormalizabile
Singularity formation after gravitational collapse

3) To test General relativity

GR has been repeatedly tested since its first proposal.
The precision of the test is getting higher and higher.

⇒ Do we need to understand what kind of modification is 
theoretically possible before experimental test?

Yes, especially in the era of gravitational wave observation!
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(Yunes & Pretorius (2009))

Comparison with constraints from GW observations
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Better constraint than pulsar timing for bi>-5/3.

GW waveform for Quasi-circular orbits

corresponding to Newtonian order

(Cornish, Sampson, Yunes, Pretorius. (2011))
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Scalar-tensor gravity
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scalar charge of self-gravitating body a:

G-dependence of the 

gravitational binding energy

Dipole radiation＝－1 PN frequency dependence

often discussed in the context of test by GWs
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Spontaneous scalarization
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   potential80   TEOM

As two NS get closer, “spontaneous scalarization” may happen.  
Sudden change of structure and starting scalar wave emission. 
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1
Rgxd

Effective potential for a star with radius R.


8T 

2/R2


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2/R2

larger radiussmaller radius

More general model

 is canonically normalized

Most of parameter region will be excluded by the discovery of many pulsars.



12(Berti et al., arXiv:1501.07274)

      =
2

0000
2

1
ln A

(Strong Equivalence Principle Test)

PSR J0337+1715

PSR J0348+0432

(2M_sol pulsar-WD)

L
o
g
|

0
| LISA 1.4M◎NS+1000M◎BH:

DECIGO1.4M◎NS+10M◎BH：
collecting 104events 

at cosmological distances

Constraint from future 
GW observations:

200=SNR

at 40Mpc 
corresponding to 

(Yagi & TT, arXiv:0908.3283)

PSR J1738+0333

(pulsar-WD)

log |0| > -2

log |0| > -4.1

Cassini bound:

After conformal transformation, the action can be recast into the following form:



Einstein dilaton Gauss-Bonnet, Chern-Simons gravity

Ordinary scalar-tensor theory
BH no hair

Turu-turu
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NS can have a scalar hair

• For constant , these higher curvature terms are 
topological invariant. Hence, no effect on EOM. 
• Higher derivative becomes effective only in strong field. 
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Hairy BH - bold NS

• By contrast, BH solutions in EDGB and CS have scalar 
monopole and dipole, respectively.

"" 2R□

• NS in EDGB and CS do not have scalar monopole charge.

"" 23 RxdQ = ""
1 24 Rxd
T =

topological invariant, which vanishes on 
topologically trivial spacetime.

EDGB： monopole charge dipole radiation (-1PN order)

CS：dipole charge 2PN order corrections

(Yagi, Stein, Yunes, Tanaka (2012))



Observational bounds

• EDGB

Cassini cm103.1 122/1 EDGB (Amendola, Charmousis, Davis (2007))

• CS

Gravity Probe B, LAGEOS (Ali-Haimound, Chen (2011))

cm10132/1 CS

cm104 52/1 EDGB

Future Ground-based GW observation 
SNR=20, 6Msol＋12Msol

Low mass X-ray binary, A0620-00

cm109.1 52/1 EDGB (Yagi, arXiv:1204.4524)

cm10 762/1 CS

Ground GW observation with favorable spin alignment: 
100Mpc, a～0.8M 

(Yagi, Stein, Yunes, TT, arXiv:1110.5950)

(Yagi, Yunes, TT, arXiv:1208.5102)

(See also Yagi, Stein, Yunes, arXiv:1510.02152)
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Future bounds on EDGB from BH-pulsar system

km ofunit   thein 2/1

EDGB

(Yagi, Stein, Yunes, arXiv:1510.02152)

Once a BH-pulsar system is 
found, how precisely one can 
measure the orbital decay rate 
determines the strength of the 
constraint on BDGB. 

 days bP
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(arXiv:1603.08955)

Constraint on the modification of gravity by GW150914

Constraints on the Gauss-Bonnet and Chern-Simons gravity 
do not apply since the constrained parameter region is outside 
the weak coupling regime.



Lorentz violation

• The Lorentz violating effects should be suppressed.

• At the lowest order in the weak field approximation, there is no 
correction to the metric if U //u (≡ the four velocity of the star).
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1

1=
UU

two constraints among the four coefficients c1～c4

Compact self-gravitating bodies can have significant 
scalar charge due to the strong gravity effect. 

Dipole radiation. 

U is not coupled to 

matter field directly.

Einstein Æther
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31 ccc =

c

c

(Yagi et al. arXiv:1311.7144)

Constraints from the GW propagation speed:

2= ccGW 16107.9 GWc SN @10kpc  tint=10msec
16109.4 GWc SGRB @200Mpc  tint=10sec

(Nishizawa et al. arXiv:1406.5544)

PSR J1141-6545

PSR J0348+0432

PSR J0737-3039

PSRJ1738-0333



Detecting GWs by Pulsar Timing Array

• It is convenient to consider in h0=0 gauge, 

in which spatial coordinates of observers remain constant. 
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• h on the emitter side does not contribute to                 

for i ≠ j, but h on receiver side does.  

• If the number of pulsars to monitor becomes N times 

larger, the number of pairs becomes N2 times larger 

and the timing error is reduced by 1/N. 
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• Supermassive BH mergers 

are the promising source. 

• The current bound on the 

GW amplitude is already 

very close to predictions. 

• Other GW sources:

– Cosmic strings

– Secondary cosmological BG 

(arXiv:1508.03024)

characteristic pattern 
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Summary

• Pulsars have been playing an important role in testing 
gravity. 

• GW test is complimentary.
• For low energy modifications like scalar-tensor 

theories pulsar constraint tends to be more 
stringent, 

• while GW can test GR in the strong gravity regime.  
• Improvement of the pulsar constraints in coming 

years is quite promising. 
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