

KAGAYA studio

宇宙重力波望遠鏡への展開

Space Gravitational Wave Observatories

佐藤修一 法政理工

2016 CHANGED EVERYTHING

- LIGO proved:
 - that GWs exist (if you didn't believe binary pulsars!)
 - that laser interferometry can detect them
 - that black holes behave dynamically as GR predicts
 - that even the first GW detection provides science surprises
 - and that the public are wowed by it all!
- \sim (LPF showed:
 - that the LISA technology is viable
 - that the LISA community's experimental team is top quality!
- This was reinforced by the strong endorsement to ESA from the GOAT.

aLIGO – GW | 509 | 4 –

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Ş

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 25 to 250 Hz with a peak gravitational wave strain of 1.0×10^{-21} . It metabose the waveform

LPF – LISA pathfinder –

PRL 116, 231101 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 10 JUNE 2016

G

Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results

M. Armano,¹ H. Audley,² G. Auger,³ J. T. Baird,⁴ M. Bassan,⁵ P. Binetruy,³ M. Born,² D. Bortoluzzi,⁶ N. Brandt,⁷ M. Caleno,⁸ L. Carbone,⁹ A. Cavalleri,¹⁰ A. Cesarini,⁹ G. Ciani,^{9,†} G. Congedo,^{9,‡} A. M. Cruise,¹¹ K. Danzmann,² M. de Deus Silva,¹ R. De Rosa,¹² M. Diaz-Aguiló,¹³ L. Di Fiore,¹⁴ I. Diepholz,² G. Dixon,¹¹ R. Dolesi,⁹ N. Dunbar,¹⁵ L. Ferraioli,¹⁶ V. Ferroni,⁹ W. Fichter,¹⁷ E. D. Fitzsimons,¹⁸ R. Flatscher,⁷ M. Freschi,¹ A. F. García Marín,^{2,§} C. García Marirrodriga,⁸ R. Gerndt,⁷ L. Gesa,¹³ F. Gibert,⁹ D. Giardini,¹⁶ R. Giusteri,⁹ F. Guzmán,^{2,∥} A. Grado,¹⁹

Spectrum of Electromagnetic wave

Spectrum of gravitational wave

LISA pathfinder

DECIGO

B-DECIGO

日本物理学会 2016 秋期大会

LISA / eLISA

E B

14 V

-

Classic LISA – Mission overview –

- Laser Interferometer Space Antenna
- Joint ESA/NASA mission
 - to detect and observe low- frequency gravitational waves
 - f = 0.1 mHz ... 100 mHz
- 3 drag-free S/C in a heliocentric orbit
 - trailing the Earth by 20° (50 million km)
- Distance between satellites 5 million km
- pm accuracy measurement through laser interferometry

Reference masses on geodesics

Classic LISA – Mission overview –

- Baseline : 5,000,000km = 5Gm
- Test mass : ~2kg
- Light source : 2W 1064nm
- 20cm telescope

۲

- 3 S/C in triangular formation
- Optical transponder interferometry Test mass to test mass measurement
 - Test mass to SC
 - SC to SC
- Combine 6 links on ground Time Delay Interferometry
- Launch with Ariane-V

Classic LISA – History –

- 1992 : Proposed as M3 mission in Horizon 2000
- 1996 : Cost reduction to 3 S/C
- 1998 : Pre-Phase A report
- 2011 : LISA Redefinition study for ESA LI
 - Mission concept : NGO (eLISA)
- 2012 : ESA L1 SPC Decision -JUICE
- 2013 : New ESA Call for Large Missions L2 and L3
- 2013 : Selected as Science Theme for ESA L3
 - L2 : "The Hot and Energetic Universe" Athena in 2028
 L3 : "The Gravitational Universe" eLISA in 2034
- 2015 : LPF launch
- 2016 : Call for L3 mission

日本物理学会 2016 秋期大会

LISA

Laser Interferometer Space Antenna for the detection and observation of gravitational waves

> An international project in the field of Fundamental Physics in Space

Pre-Phase A Report Second Edition July 1998

July 1998

MPQ 233

eLISA – Mission overview –

evolving LISA

۲

- Baseline : 1,000,000km (IGm)
- I interferometer
 - 2 optical links

日本物理学会 2016 秋期大会

Launch with Soyuz

eLISA – Orbit –

日本物理学会 2016 秋期大会

eLISA — Mission requirement — Displacement noise : 1.2 x 10⁻¹¹ m/rHz

Acceleration noise : $3.0 \times 10^{-15} \text{ m/s}^2/\text{rHz}$

Strain linear spectral density (1/v

eLISA – Science case –

パス

Characteristic strain amplitude

日本

eLISA – Science case–

- Compact white dwarf binaries (CWDs)
 - Some 10³⁻⁴ are expected to be resolved over 10⁷ Galactic binaries
- Compact neutron-star and black-hole binaries
 - Next to NS/NS binary system
- Massive black hole binaries (MBHBs)
 - Cosmological merger history of MBH
 - Dynamics of galaxy formation and evolution
- Extreme mass ratio inspirals (EMRIs)
 - Precise map of the spacetime geometry of the SMBH
- Gravitational wave backgrounds
- astrophysical or cosmological nature, like BWD

eLISA – Perspective –

2016 : eLISA design/mission not selected yet

- Options analyzed by Gravitational Wave Advisory Team (GOAT)
- 2016 : Call for mission concepts for L3
- 2017 : Mission proposal

- 2020 : Phase-A completed
- 2022 : Technology matured
- 2024 : Phase-B1 completed
- 2034 : Launch as L3 @ ESA

+14 months to orbit

eLISA – Options –

- Arm length L= 1, 2, 5 Gm
- Low-frequency noise at the LISA requirement level of LPF or IO times worse
- 4 or 6 links
- 2 or 5 year mission
- Laser power of 0.7 W or 2 W
- Telescope mirror size of 25, 28 or 40 cm

eLISA – aLIGO+LPF Impact –

LIGO + LPF: IMPACT

3 Sep. 2016 @ 宮崎大学木花キャンパス

The GW game has changed

- Strong international interest NASAJAXA, China
- Strong motivation for bringing L3 closer
- Strong motivation for doing a 3-arm, 6-link mission
- Realisation that there is joint science to be done by ground-based and space-based observatories
- Confirmation that GW observations do astronomy as well as probe the fundamental nature of spacetime

hutz 05.09.16 CARDIFI t Einstein Institute/Cardiff University

LISA Science after GW140915 and LPF

LISA Pathfinder

日本物理学会 2016 秋期大会

LISA pathfinder – Concept –

00

Technology demonstration for LISA

- Test of most of the local measurement (95 % of noise)
- Same hardware/processes with LISA to carry them at TRL 8-9.
- In-orbit consolidation test for our physical model of free fall

ESA spacecraft

European Payload Mission (LISA Technology Package : LTP) NASA Payload Mission (Disturbance Reduction System : DRS)

LISA pathfinder – Concept –

- One LISA link inside a single spacecraft
 - 2 Test masses

- 4 interferometers
 - Satellite chases one test mass
 - Second test-mass forced to follow the first

LISA pathfinder – Mission requirement –

LPF amplitude requirement relaxed : single spacecraft experiment more noisy Frequency requirement relaxed to cut down ground testing time Interferometer requirements to allow for margin and to match LISA sensitivity range

LISA pathfinder – The LTP –

Test masses gold-platinum, 46mm, highly non-magnetic

0

- Electrode housing
- UV light : neutralize the cosmic ray charging
- Caging mechanism
- Vacuum enclosure
- Ultra high mechanical stability optical bench

Test mass
 Optical bench
 Electrode housing

LISA pathfinder – Interferometer –

- 4 Interferometers of the Optical Metrology System
 - X1 Interferometer : Measures position and orientation of TM1
 - X12 Interferometer : Measures position and orientation of TM2 w.r.t.TM1
 - Reference Interferometer : Measures phase fluctuations common to both optical fibers
 - Frequency Interferometer : Measures fluctuations of laser frequency

LISA pathfinder – History –

LISA pathfinder – Launch –

2015.12.3 @ Guiana Space Centre, Kourou

LISA pathfinder – Journey to LI –

- Orbit raised via 6 apogee raising manoeuvres
 Transfer to Lagrange Point (L1) took ~50 days
 Separation of propulsion module on 2 February
- Final Orbit :
 - 500,000km x 800,000km around L1
 - Orbital Period of 6 months

LISA pathfinder – Timeline –

- 2015.12.3 : Launch of LISA Pathfinder
- 2016.1.11 : Switch-on of the LISA Technology Package
- 2016.2.2 : Release of test mass launch locks and opening of venting valve
- 2016.2.15 & 16 : Test mass release \rightarrow free floating test masses
- 2016.2.18 : Alignment of the laser interferometer
- 2016.2.22 : First entry to Science Mode
- 2016.3.1 : Start of Science Operations
- 2016.6.25 : End of LTP Science Ops & start of DRS Ops
- 2016.6.27 : DRS Commissioning, Phase 2
- 2016.12 : End DRS Operations, start extended mission
- 2017.5 : End of mission

٢

<u>_</u>

LISA pathfinder – Noise budget prior to launch –

LISA pathfinder – Acceleration noise spectrum–

LISA pathfinder – Expected LISA signal –

Simulated LISA acceleration signal for two 5×10^5 M_{\odot} black-holes with their galaxies merging at z=5 LISA Pathfinder acceleration data

ス

日本

DECIGO

日本物理学会 2016 秋期大会

DECIGO – The idea –

DECi-hertz Interferometer Gravitational wave Observatory

- Seto, Kawamura and Nakamura, PRL87, 221103(2001)
- Bridges the gap between LISA and terrestrial detector
- Low confusion noise \rightarrow Potentially high sensitive instruments

DECIGO – Pre-conceptual design –

Interferometer parameters

Arm length: 1000 km

- Mirror diameter:
- Mirror mass:
- Laser wavelength : 10W
- Laser power:
- Finesse:

l m 100 kg 515 nm

0

Interferometer topology

- Differential FP interferometer
 - Three interferometers for redundancy
 - Drag-free controlled S/Cs

Constellation

- 4 interferometer units
- 2 overlapped units \rightarrow Cross correlation
- 2 separated units \rightarrow Angular resolution

DECIGO – Science case –

[Hz^{-1/2}]

amplitude

GVV

BNS Inspirals

- From cosmological distance
- Cosmology (Inflation, Dark energy)

IMBH Inspirals and Mergers

- Formation history of SMBH
- Galaxy formation

Stochastic background

Fundamental physics

DECIGO – Access to very beginning of the Universe – DECIGO

DECIGO band is open window for direct observation of the early universe.

B-DECIGO

日本物理学会 2016 秋期大会

B-DECIGO – Revised Roadmap –

Fig. by Kawamura, rev.

B-DECIGO – Pre Conceptual Design

Pre-DECIGO

Mission Requirement

- Strain sensitivity of 2×10^{-23} Hz^{-1/2} at 0.1Hz.
- 3-years observation period.

Conceptual Design

- Laser interferometer by 3 S/C
- Baseline : 100 km
- Laser source : IW, 515nm
- Mirror : 300mm, 30kg
- Drag-free and Formation flight.
- Record-disk orbit around the earth:
- Altitude 2000km, Period ~ I 20min (Preliminary).

B-DECIGO – Sensitivity Curve –

B-DECIGO – Science Case –

Inspiral of Compact Binaries

- High rate $\sim 10^6$ binaries/yr.
- Estimation of binary parameters and merger time.
- Astronomy by GW only and GW-EM observations.

Inspirals and Mergers of IMBHs

- Cover most of the universe.
- Formation history of SMBH and galaxies.

Foreground Understandings for DECIGO

Parameter estimation and subtraction of binaries.

 10^{0}

10-5

10-10

10-15

10-20

GW from Infration

10-15

density of en

(GW

 Ω_{GW} critical

PPTA

- Characteristics of foreground
- Is the any eccentric binaries? e universe) ratio for

日本物理学会 2016 秋期大会

10-10 10-5 10^{0} 10 Frequency [Hz] 23 Sep. 2016 @ 宮崎大学木花キャンパス

DECIGO

(AGR/

B-DECIGO – Observable Range

B-DECIGO – Compact Binaries –

T. Nakamura et al., Prog. Theor. Exp. Phys. 093E01 (2016)

BBH

- Observable range ~Tpc
- Detection Rate will be $\sim 4 \times 10^4 10^6$ evevts/yr
- Possible to identify the origin of BBH Pop-III, Pop-I/II, or Primordial BH.

BNS

- Range for BNS is ~2Gpc
- Higher rate expected.

- With low-freq. GW observations, longer observation
 - Improved parameter estimation accuracy with lager cycle number (~ 10^5) :
 - Localization, Merger time \rightarrow Alerts for GW-EM.
 - Mass, Distance, Spin \rightarrow Origin and nature of BBH.

日本物理学会 2016 秋期大会

aLIGO observed GW150914

LISA pathfinder exceeds expectations

Strong motivation for LISA

Strong motivation for DECIGO / B-DECIGO

日本物理学会 2016 秋期大会

日本物理学会 2016 秋期大会