連星ブラックホール合体と 相対論の検証について Testing GR with Binary Black Hole Mergers

中野寛之(京大理) Hiroyuki Nakano (Kyoto)

Probing Various Gravitational Theories (Yagi-san)

Consistent with GR?

Numerical Relativity

(Kiuchi-san)

- Strongest test of GR
 - Numerical relativity simulation for binary black holes
 - Inspiral-merger-ringdown waveforms

NR waveform

Credits: Carlos O. Lousto and James Healy

Numerical Relativity

(Kiuchi-san)

- Strongest test of GR
 - Numerical relativity simulation for binary black holes

Two papers

- Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence Phys. Rev. D 94, 064035 (2016) [arXiv:1606.01262 [gr-qc]].
- Modeling the source of GW150914 with targeted numericalrelativity simulations arXiv:1607.05377 [gr-qc].

Phys. Rev. D 94, 064035 (2016)

- Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence
- 1139 distinct simulations
 - quasicircular inspiral and coalescence
 - 7 parameters (mass ratio (1), spin directions (6))

$$q = m_1/m_2$$

Simulations

Mass ratio / spin / initial orbital frequency / remnant mass / spin

Key	q	$\chi_{1,x}$	$\chi_{1,y}$	$\chi_{1,z}$	X2,x	Х2,у	X 2,z	χeff	$M\omega_0$	M_f/M	a_f
D10.50 g0.1667 a0.0 0.0 n100(*)	6.000								0.026	0.986	0.372
D10 $q0.33 a-0.8 xi0 n100(*)$	2.999	0.757	0.030	0.259			-0.800	-0.006	0.029	0.965	0.756
D10 q0.33 a0.8 xi0 n120(*)	2.999	0.754	0.031	-0.268			0.800	-0.001	0.030	0.970	0.607
D10 q0.50 a-0.50 0.50 n100(*)	2.000			0.500			-0.500	0.167	0.028	0.953	0.751
D10 q0.50 a-0.8 xi0 n100(*)	2.000	0.696	0.059	0.392		-0.006	-0.801	-0.005	0.030	0.956	0.768
SXS:BBH:0001[p]	1.000								0.012	0.952	0.686
SXS:BBH:0010	1.501	0.248	0.028	-0.433				-0.260	0.014	0.962	0.563
SXS:BBH:0100	1.500								0.012	0.955	0.664
SXS:BBH:0101	1.501			-0.500				-0.300	0.011	0.963	0.540
SXS:BBH:0102	1.500	0.496	0.051	-0.001	0.494	0.071	-0.001	-0.001	0.014	0.954	0.695
RIT:BBH:NQ16TH115PH0	6.000	0.725		-0.338				-0.290	0.033	0.991	0.554
RIT:BBH:NQ16TH115PH120	6.000	-0.363	0.628	-0.338				-0.290	0.034	0.991	0.552
RIT:BBH:NQ16TH115PH150	6.000	-0.628	0.363	-0.338				-0.290	0.034	0.991	0.556
RIT:BBH:NQ16TH115PH30	6.000	0.628	0.363	-0.338				-0.290	0.032	0.991	0.553
RIT:BBH:NQ16TH115PH60	6.000	0.363	0.628	-0.338	•••			-0.290	0.034	0.991	0.556
RIT:BBH:KTH22.5PH0	1.000	-0.026	0.304	0.760	-0.008	0.310	-0.759	0.001	0.042	0.960	0.695
RIT:BBH:KTH22.5PH120	1.000	-0.272	-0.157	0.757	-0.272	-0.157	-0.757		0.043	0.961	0.698
RIT:BBH:KTH22.5PH150	1.000	-0.157	-0.272	0.757	-0.157	-0.272	-0.757		0.043	0.961	0.697
RIT:BBH:KTH22.5PH30	1.000	-0.185	0.257	0.756	-0.157	0.272	-0.757	-0.001	0.042	0.960	0.695
RIT:BBH:KTH22.5PH60	1.000	-0.297	0.138	0.751	-0.272	0.157	-0.757	-0.003	0.042	0.960	0.695
GT:BBH:564	1.000			-0.400			-0.400	-0.400	0.026	0.961	0.560
GT:BBH:476	1.000			-0.200			-0.200	-0.200	0.025	0.956	0.624
(0.0, 1.0)	1.000								0.030	0.952	0.686
(0,1.0,'M100')	1.000								0.029	0.951	0.687
(0.0,1.0,'M120','D11')	1.000					•••			0.029	0.951	0.686

A simple combination of spins: $\chi_{\text{eff}} = (\mathbf{S}_1/m_1 + \mathbf{S}_2/m_2) \cdot \hat{L}/M$,

Phys. Rev. D 94, 064035 (2016)

- Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence
- 1139 distinct simulations
 - quasicircular inspiral and coalescence
 - 7 parameters (mass ratio (1), spin directions (6))
- Redshifted total mass (1)
- 7 extrinsic parameters

 (spacetime coordinates for the event (4), Euler angles of binary's orientation (3))
 --> marginalized out

Rankings

Mass ratio / spin / redshifted total mass / start frequency

Кеу	q	<i>χ</i> _{1,x}	$\chi_{1,y}$	$\chi_{1,z}$	<i>χ</i> _{2,x}	X2,y	$\chi_{2,z}$	Xeff	M_z/M_{\odot}	$f_{\rm start}({\rm Hz})$
SXS:BBH:0310(*)	1.221							0.00	73.0	15.1
D12 q1.00 a-0.25 0.25 n100(*)	1.0			0.250			-0.250	-0.00	73.2	20.5
SXS:BBH:0002[S]	1.0							0.00	73.2	10.0
<u>D11 g0.75 a0.0 0</u> .0 n100(*)	1.333							-0.00	72.1	23.1
SXS:BBH:0305(*+)	1.221			0.330			-0.440	-0.02	74.2	14.8

(**L=2**, m=all), *f*_{low} = 30Hz

Кеу	q	<i>χ</i> _{1,x}	X1,y	$\chi_{1,z}$	X2,x	X2,y	$\chi_{2,z}$	$\chi_{ m eff}$	M_z/M_{\odot}	$f_{\text{start}}(Hz)$
SXS:BBH:0002[S]	1.0							0.00	73.2	10.0
SXS:BBH:0307(*)	1.228			0.320			-0.580	-0.08	71.8	16.6
SXS:BBH:0218	1.0			-0.500			0.500	0.00	72.8	10.7
D12 q1.00 a-0.25 0.25 n100(*)	1.0			0.250			-0.250	-0.00	73.6	20.4
SXS:BBH:0217	1.0			-0.600			0.600	0.00	73.4	11.9
SXS:BBH:0127	1.34	0.010	-0.077	-0.017	-0.061	-0.065	-0.179	-0.09	71.0	14.4
SXS:BBH:0198	1.202							0.00	73.1	12.8
SXS:BBH:0310(*)	1.221							0.00	72.4	15.2
SXS:BBH:0211	1.0			-0.900			0.900	0.00	73.4	11.5
SXS:BBH:0312(*)	1.203			0.390			-0.480	-0.00	73.8	14.8
SXS:BBH:0305(*+)	1.221			0.330			-0.440	-0.02	73.2	15.0

(**L=2 and 3**, m=all), *f*_{low} = 30Hz

Uncertainty in parameter estimation

Advertisement

Unless otherwise noted, we extract $\tilde{\psi}_{4,lm}(f)$ [and therefore $\tilde{h}_{lm}(f)$ and $h_{lm}(t)$] at infinity using a perturbative extrapolation [110]

[110] H. Nakano, J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D91, 104022 (2015), arXiv:1503.00718 [gr-qc].

• Gravitational wave at infinity (Weyl scalar ψ_4 from NR)

$$\lim_{r\to\infty} r\psi_4 = \lim_{r\to\infty} r(\ddot{h}_+ - i\ddot{h}_\times).$$

• ψ_4 extracted from a finite radius, need extrapolation

$$r\psi_4^{\ell m}|_{r=\infty} = \left(1 - \frac{2M}{r}\right) \left(r\psi_{4\ell m}^{\rm NR}(t,r) - \frac{(\ell-1)(\ell+2)}{2r} \int dt [r\psi_{4\ell m}^{\rm NR}(t,r)]\right)$$

• But, there is a problem ... We will see later.

arXiv:1607.05377 [gr-qc]

Two completely independent codes

	LazEv	SpEC					
Initial data							
Formulation of Einstein constraint	conformal method using Bowen-York	conformal thin sandwich [38, 40]					
equations	solutions [37–39]						
Singularity treatment	puncture data [41]	quasi-equilibrium black-hole					
		excision $[42-44]$					
Numerical method	pseudo-spectral [45]	pseudo-spectral [46]					
Achieving low orbital eccentricity	post-Newtonian inspiral [47]	iterative eccentricity removal [48, 49]					
Evolution	Evolution						
Formulation of Einstein evolution	BSSNOK [50–52]	first-order generalized harmonic with					
equations		constraint damping $[11, 53-55]$					
Gauge conditions	evolved lapse and shift [56–58]	damped harmonic [59]					
Singularity treatment	moving punctures [12, 13]	excision [60]					
Outer boundary treatment	Sommerfeld	minimally-reflective,					
		constraint-preserving [53, 61]					
Discretization	high-order finite-differences [62, 63]	pseudo-spectral methods					
Mesh refinement	adaptive mesh refinement [64]	domain decomposition with spectral					
		adaptive mesh refinement [46, 59]					

Exception: [38] Pfeiffer and York, Phys. Rev. D 67, 044022 (2003). A new class of covariant decompositions of the extrinsic curvature

Target

• GW150914

Mass ratio / spin / initial frequency / radial velocity / separation / eccentricity

Config.	q	χ_1	χ_2	$M\Omega_0$	$M\dot{a}_0 \times 10^4$	d_0/M	e
RIT	1.220	-0.4400	0.3300	0.02118	-1.1712	12.2500	0.0012
SXS	1.221	-0.4400	0.3300	0.01696	-0.5306	14.2601	0.0008

• Initial parameters for BBH ($M = m_1 + m_2$)

Config.	x_1/M	x_2/M	P_t/M	P_r/M	m_1^p/M	m_2^p/M	S_1/M^2	S_2/M^2	m_1/M	m_2/M	$M_{\rm ADM}/M$
RIT	-6.7308	5.5192	0.083116	-0.000490	0.40207	0.51363	-0.08932	0.09963	0.45055	0.54945	0.99141
SXS	-7.8597	6.4004	-	-	-	-	-0.08918	0.09975	0.45020	0.54980	0.99235

• Comparison of the (L, m) = (2, 2) mode extracted from two simulations from SpEC and LazEv.

Quantitative treatment

• Match (with time and phase shifts only)

$$\mathscr{M} \equiv \frac{\langle h_1 \mid h_2 \rangle}{\sqrt{\langle h_1 \mid h_1 \rangle \langle h_2 \mid h_2 \rangle}},$$

• Overlap with Advanced LIGO design power spectrum (S_n)

$$\langle h_1 \mid h_2 \rangle = 2 \int_{-\infty}^{\infty} \frac{df}{S_n(f)} \left[\tilde{h}_1(f) \tilde{h}_2(f)^* \right],$$

• Integration for $|f| \ge f_{min}$

Mismatch (1-Match) between SXS (>15.7Hz) and RIT (>19.5Hz) (*L*=2, *m*=2)-mode waveforms, against one another and against a corresponding SEOBNRv2 (analytical-modeling) template

ℓ	m	N100	N110	N120	$\left\langle h_{\ell m}^{L6} h_{\ell m}^{L6} \right\rangle$
2	0	0.8854	0.8863	0.8870	9.82
2	1	0.9905	0.9914	0.9908	16.78
2	2	0.9980	0.9980	0.9980	927.74
3	0	0.7822	0.8146	0.8356	1.02
3	1	0.9517	0.9569	0.9582	1.52
3	2	0.9978	0.9980	0.9981	28.59
3	3	0.9927	0.9933	0.9933	42.17
4	0	0.3603	0.3581	0.3554	0.05
4	1	0.7910	0.8348	0.8616	0.17
4	2	0.9074	0.9425	0.9562	1.79
4	3	0.9844	0.9909	0.9938	2.50
4	4	0.9863	0.9886	0.9901	40.95
5	0	0.3638	0.4050	0.4458	0.01
5	1	0.2994	0.3652	0.4227	0.01
5	2	0.6108	0.6176	0.6392	0.14
5	3	0.7813	0.8709	0.9197	0.32
5	4	0.9705	0.9815	0.9879	2.49
5	5	0.9315	0.9552	0.9696	4.94

 $f_{min} = 22 \text{ Hz}$ or 22m Hz

Match between SXS (L6) and RIT waveforms.

ℓ	m	N100	N110	N120	$\left\langle h_{\ell m}^{L6} h_{\ell m}^{L6} \right\rangle$
2	0	0.8854	0.8863	0.8870	9.82
2	1	0.9905	0.9914	0.9908	16.78
2	2	0.9980	0.9980	0.9980	927.74
3	0	0.7822	0.8146	0.8356	1.02
3	1	0.9517	0.9569	0.9582	1.52
3	2	0.9978	0.9980	0.9981	28.59
3	3	0.9927	0.9933	0.9933	42.17
4	0	0.3603	0.3581	0.3554	0.05
4	1	0.7910	0.8348	0.8616	0.17
4	2	0.9074	0.9425	0.9562	1.79
4	3	0.9844	0.9909	0.9938	2.50
4	4	0.9863	0.9886	0.9901	40.95
5	0	0.3638	0.4050	0.4458	0.01
5	1	0.2994	0.3652	0.4227	0.01
5	2	0.6108	0.6176	0.6392	0.14
5	3	0.7813	0.8709	0.9197	0.32
5	4	0.9705	0.9815	0.9879	2.49
5	5	0.9315	0.9552	0.9696	4.94

Dominant (*L*, *m*) modes

ℓ	m	N100	N110	N120	$\left\langle h_{\ell m}^{L6} h_{\ell m}^{L6} \right\rangle$
2	0	0.8854	0.8863	0.8870	9.82
2	1	0.9905	0.9914	0.9908	16.78
2	2	0.9980	0.9980	0.9980	927.74
3	0	0.7822	0.8146	0.8356	1.02
3	1	0.9517	0.9569	0.9582	1.52
3	2	0.9978	0.9980	0.9981	28.59
3	3	0.9927	0.9933	0.9933	42.17
4	0	0.3603	0.3581	0.3554	0.05
4	1	0.7910	0.8348	0.8616	0.17
4	2	0.9074	0.9425	0.9562	1.79
4	3	0.9844	0.9909	0.9938	2.50
4	4	0.9863	> 0.9886	> 0.9901	40.95
5	0	0.3638	0.4050	0.4458	0.01
5	1	0.2994	0.3652	0.4227	0.01
5	2	0.6108	0.6176	0.6392	0.14
5	3	0.7813	0.8709	0.9197	0.32
5	4	0.9705	0.9815	0.9879	2.49
5	5	0.9315	> 0.9552	> 0.9696	4.94

----> Higher resolution

l	m	N100	N110	N120	$\left\langle h_{\ell m}^{L6} h_{\ell m}^{L6} \right\rangle$
2	0	0.8854	0.8863	0.8870	9.82
2	1	0.9905	0.9914	0.9908	16.78
2	2	0.9980	0.9980	0.9980	927.74
3	0	0.7822	0.8146	0.8356	1.02
3	1	0.9517	0.9569	0.9582	1.52
3	2	0.9978	0.9980	0.9981	28.59
3	3	0.9927	0.9933	0.9933	42.17
4	0	0.3603	0.3581	0.3554	0.05
4	1	0.7910	0.8348	0.8616	0.17
4	2	0.9074	0.9425	0.9562	1.79
4	3	0.9844	0.9909	0.9938	2.50
4	4	0.9863	0.9886	0.9901	40.95
5	0	0.3638	0.4050	0.4458	0.01
5	1	0.2994	0.3652	0.4227	0.01
5	2	0.6108	0.6176	0.6392	0.14
5	3	0.7813	0.8709	0.9197	0.32
5	4	0.9705	0.9815	0.9879	2.49
5	5	0.9315	0.9552	0.9696	4.94

Worse for lower *m* modes

Extrapolating gravitational-wave data

• Taylor series fitting with respect to $\frac{1}{r}$ in SXS

$$A = \sum \frac{A_{(n)}}{r^n}$$

Boyle and Mroué, Phys. Rev. D 80, 124045 (2009).

Perturbative extrapolation

$$\begin{split} r\psi_{4}^{\ell m}|_{r=\infty} &= \left(1 - \frac{2M}{r}\right) (r\psi_{4\ell m}^{\rm NR}(t,r) - \frac{(\ell-1)(\ell+2)}{2r} \int dt [r\psi_{4\ell m}^{\rm NR}(t,r)] \\ &+ \frac{(\ell-1)(\ell+2)(\ell^2 + \ell - 4)}{8r^2} \int \int dt dt [r\psi_{4\ell m}^{\rm NR}(t,r)]) \end{split}$$

 $\int dt \to \frac{1}{\omega}, \qquad \omega = m \sqrt{M/r_0^3}$

Brief summary

- The length of the waveforms for lower masses is challenging to model with pure NR.
- It is more efficient to match the early part of the binary evolution to PN waveforms and build up a hybrid databank.

--- By Carlos O. Lousto in GR21

Brief summary

- The length of the waveforms for lower masses is challenging to model with pure NR.
- It is more efficient to match the early part of the binary evolution to PN waveforms and build up a hybrid databank.
- Challenging corners of the parameter space: small mass ratios and high spins.
- Still NR to provide further simulations for BH/NS and NS/NS systems.

--- By Carlos O. Lousto in GR21

Ringdown of GW150914

Derived from the full waveform

LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 221101 (2016).

Ringdown and quasinormal modes

• Ringdown GWs are described by damped sinusoidal waves.

$$h \propto \exp\left[-\pi f_c(t-t_0)/Q\right] \cos(2\pi f_c(t-t_0) - \phi_0)$$

- Central frequency: f_c , quality factor: Q, t_0 , φ_0 : initial time and phase
- If the remnant is BH, then BH's QNMs! The dominant (L=2, m=2), least-damped (n=0) mode

$$f_c = \frac{1}{2\pi M_{\rm rem}} \left[1.5251 - 1.1568(1 - \alpha_{\rm rem})^{0.1292} \right]$$

= 538.4 $\left(\frac{M_{\rm rem}}{60M_{\odot}} \right)^{-1} \left[1.5251 - 1.1568(1 - \alpha_{\rm rem})^{0.1292} \right]$ [Hz]
$$Q = 0.7000 + 1.4187(1 - \alpha_{\rm rem})^{-0.4990},$$

Berti, Cardoso and Will, Phys. Rev. D 73, 064030 (2006).

Simple GR test

(5.0ms) SNR ~ 6.3, 90% CL

Schwarzschild line ($\alpha_{rem} = 0$): If below the line, something wrong in GR.

Ringdown (real and imaginary freq.)

Nakano, Tanaka, Nakamura, Phys. Rev. D92, 064003 (2015).

Typical Pop III BBHs

(Kinugawa-san)

Kinugawa, Inayoshi, Hotokezaka, Nakauchi and Nakamura, MNRAS 442, 2963 (2014).

Kinugawa, Miyamoto, Kanda and Nakamura, MNRAS 456, 1093 (2016).

- Total mass: 60M_sun, equal mass
- (assuming nonspinning BBHs)
- Simply use the phenomenological fitting formulas for the remnant mass and spin

Healy, Lousto and Zlochower, Phys. Rev. D 90, 104004 (2014).

Simple GR test

Kinugawa, Nakano, Nakamura, arXiv:1606.00362

SNR=35?

Event	$M_{\rm rem}/M_{\odot}$	$\alpha_{\rm rem}$
GW150914	62.3	0.68
LVT151012	35	0.66
GW151226	20.8	0.74

LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1606.04856

GW150914

LVT151012

GW151226

With **B-DECIGO**

T. Nakamura et al., Prog. Theor. Exp. Phys. 093E01 (2016) [arXiv:1607.00897 [astro-ph.HE]].

Summary

- Strong test by numerical relativity
- Simple GR test with QNM
 - Cf. Testing GR (BH) with multi QNMs
- Main stream (?) Extraction of Ringdown GWs is important!

Inspiral phase (m_1, m_2, S_1, S_2)

Merger phase Numerical relativity --> Fitting formula

Ringdown phase (M_{rem}, α_{rem}) QNM spectrum

New physics from deviation

 Yagi-san's presentation on "Probing Various Gravitational Theories"

Kerr BH and QNMs

Starting from Kerr metric

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma}\right)dt^{2} - \frac{4Mar\,\sin^{2}\theta}{\Sigma}dtd\phi + \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2} + \left(r^{2} + a^{2} + \frac{2Ma^{2}r}{\Sigma}\sin^{2}\theta\right)\sin^{2}\theta d\phi^{2},$$

$$\Sigma = r^2 + a^2 \cos^2 \theta \qquad \Delta = r^2 - 2Mr + a^2$$

Master equation for perturbations

Teukolsky equation

$$\Delta^2 \frac{d}{dr} \frac{1}{\Delta} \frac{dR}{dr} - VR = -T \,,$$

S. A. Teukolsky, ApJ. 185, 635 (1973).

Sasaki-Nakamura equaiton

• V: Potential of radial Teukolsky Eq.: Long-range

$$\Delta^2 \frac{d}{dr} \frac{1}{\Delta} \frac{dR}{dr} - VR = \mathbf{0} \quad ,$$

For QNMs, vacuum perturbation

To short-range one Sasaki, Nakamura, Phys. Lett. A 89, 68 (1982).
Sasaki, Nakamura, Prog. Theor. Phys. 67, 1788 (1982).
Nakamura, Sasaki, Phys. Lett. A 89, 185 (1982).

$$\frac{d^2Y}{dr^{*2}} + (\omega^2 - V_{\rm SN}) Y = 0 \,,$$

$$\frac{dr^*}{dr} = \frac{r^2 + a^2}{\Delta}.$$

OVALUATE: OVALUATE: OVALUATE: OVALUATE: OVALUATE: OVALUAT: OVALU

Accuracy in WKB

Fig. 4 (Left) The real and imaginary parts of the fundamental (n = 0) QNM frequencies with $V_{\rm D}(\ell = 2, m = 2)$ evaluated for various spin parameters q = a/M. The exact frequencies $\operatorname{Re}(\omega)$ and $\operatorname{Im}(\omega)$ are from Ref. [26, 27]. (Right) Absolute value of relative errors for the real and imaginary part of the QNM frequencies with $V_{\rm D}(\ell = 2, m = 2)$, $\delta_{\rm R} = |(WKB \operatorname{Re}(\omega))/\operatorname{Re}(\omega) - 1|$ and $\delta_{\rm I} = |(WKB \operatorname{Im}(\omega))/\operatorname{Im}(\omega) - 1|$ between the exact value and that of the WKB approximation.

Uncertainty of peak location

 An analysis for the uncertainty (in the limit of spin parameter, q=a/M → 1) Nakano, Sago, Tanaka, Nakamura, Prog. Theor. Exp. Phys., 083E01 (2016).

Peak location:

$$\frac{r_{\rm p}}{M} \lesssim 1 + 1.8 \, (1 - q)^{1/2} \, .$$

• Event horizon:

$$r_{+}/M = 1 + \sqrt{1 - q^{2}} = 1 + \sqrt{2} (1 - q)^{1/2} + O((1 - q)^{3/2}),$$

Various radius

Prog. Theor. Exp. Phys., 041E01 (2016).