超新星爆発モデルの進展と今後の展望 超新星爆発による重力波の検出

日本物理学会 第70回年次大会 2015/03/24 大阪市立大学 横澤孝章

- Gravitational Wave(GW) detectors
 - KAGRA status
 - Candidate GW sources
- Analysis strategy from Supernova signal
 - TF clustering
 - Multi detector coherent network analysis
 - With External trigger
- Messages from Supernova
 - Multi-messenger astronomy
 - Our latest results

GW and Laser interferometer

- Einstein Equation For a small perturbation "h", a wave equation is derived $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu} \qquad g_{\mu\nu} = \eta_{\mu\nu} + \frac{h_{\mu\nu}}{\rho \text{erturbation}} \left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)h_{\mu\nu} = 0$ Two polarization : + mode and × mode • Two polarization : + mode and × mode $h_{+} = h \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad h_{\times} = h \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad + \text{mode} \quad - \text{mode} \quad$ • Energy of GW Laser interferometer $I_{\mu\nu} = \int \rho(\vec{r}) (x_{\mu}x_{\nu} - \frac{1}{3}\delta_{\mu\nu}r^2) d^3x$ Fabry-perot Michelson $\mathcal{L}_{gw} = \int_{r \to \infty} T_i^{0gw} n^i r^2 d\Omega$ interferometer $=\frac{G}{5c^5}<\ddot{I}_{\mu\nu}\ddot{I}^{\mu\nu}>$ Observe the optics of $h_{\mu\nu} \simeq \frac{2G}{rc^4} \ddot{I}_{\mu\nu}$ interface
 - Mass quadruple moment axis asymmetry
- **Direction dependence**

GW and Laser interferometer

0.6

0.5

Detector sensitivity curve

Horizontal axis : Frequency[Hz] Vertical axis : [1/rHz] strain equivalent noise spectrum

Best sensitivity : a few 10^{-24} @~100Hz

KAGRA : detector overview

2nd generation GW detector in Japan

- Large-scale Detector arm length : 3km each
- Cryogenic interferometer
 - Mirror temperature : 20K
- Underground site Kamioka Mine

KAGRA : installation

Beam duct :

Cryostat :

Laser booth :

Digital control room : Stack Vibration :

Geophysical interferometer :

I went to the inside of mine at February : Computer installation

Pictures by T.Uchiyama

World GW detectors

KAGRA(3km)

Virgo(3km)

(4km&2km)

International GW detector network

- Reduce the False Alarm Ratio (chance coincidence)
 Detector noise => non detector correlation
 Supernova signal => correlation
 Applying Coherent Network Analysis(explain later)
- Expand sky coverage

- Coverage of all sky is very important multi detector help it

Detector 1

Detector

Detector

Detector M

- Estimation of source direction

B.Schutz(2011)

- Need (more than) four detectors
- Coincidence, Coherence

T.Arima

	Known waveform	Unknown waveform
Short	Compact Binary Coarseness NS-NS, NS-BH, BH-BH, Matched filtering	Supernova, GRB, pulsar glitch Soft Gamma Repeater, Excess power, TF clustering,
duration	2e-22 Inspiral期の波形 (チャープ波形) 1e-22 +(t) 0 +(t) 0 -1e-22 -1e-22 100Mpc;1.4-1.4Mo -0.1 -0.08 -0.06 -0.04 -0.02 0	http://www.eso.org
	mili-second pulsar, radiometry LMXB search	Stochastic GW, Cosmic string GW,
Long	F-statistics, performance	BICEP2: B signal
duration	GPGPU	
	Wikipedia	Right ascension [deg.]

9

Analysis strategy - Observed signal-

Frequency [Hz]

Expand to TF plane Search transient signal

Time[sec]

Single detector -TF clustering-

- Analysis flow :
 - Data quality check, commissioning
 - Transform to TF plane
 - Search the local high power pixel
 - Clustering
 - Event reconstruction
- Obtain Signal to Noise ratio effectively
- Extract characteristics Time and Frequency
- Check with noise catalogue

Analysis strategy -Detector noise-

- But real detector has
- Non-stationary noise
 - Change noise floor level
 - Many glitch noises with short time
- Non-gaussian noise
 - Glitch noise
 - seismic motion
 - earthquake, oscene wave, etc...
 - electro-magnetic noise
 - etc...

-reduce/identify them (important task)

- Correlation analysis with Environmental channels
 - linear correlation (Pearson correlation factor)
 - non-linear correlation (Maximum Information Coefficients)
- Noise classification
 - Bayesian non-parametric clustering
- Non-stationarity, non-gaussian noise monitor etc...

Example of LIGO S5 data

Multi detector -Coherent network analysis-

- Coherent network analysis

$$\begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{d} \end{bmatrix} = \begin{bmatrix} F_{1+}(\theta, \phi) & F_{1\times}(\theta, \phi) \\ \vdots & \vdots \\ F_{d+}(\theta, \phi) & F_{d\times}(\theta, \phi) \end{bmatrix} \begin{bmatrix} h_{+}(t) \\ h_{\times}(t) \end{bmatrix} + \begin{bmatrix} n_{1}(t) \\ \vdots \\ n_{d}(t) \end{bmatrix}$$

Data Detector response GW Detector noise $\mathbf{x} = \mathbf{A}\mathbf{h} + \mathbf{N}$

- Solve the inverse problem h with maximum likelihood method

- Changing source direction(heta , ϕ)
- Find the likely GW waveform h

$$\mathbf{L} = \max(-||\mathbf{x} - \mathbf{Ah}||^2)$$

 $||data(x) - estimated signal(\xi)||^2$

- Various pipelines are proposed
 - coherent WaveBurst
 - Xpipeline
 - RIDGE etc...

where
$$||x||^2 = \sum_{i=1}^d \int_0^T x_i(t)^T x_i(t) dt$$

$$h = (A^T A)^{-1} A^T x$$

time[ms]

60 70 time[ms]

1.4 1.6 EPOUP ID

1.2

40

arXiv.org > astro-ph > arXiv:1501.00966

Astrophysics > High Energy Astrophysical Phenomena

Coherent Network Analysis of Gravitational Waves from Three-Dimensional Core-Collapse Supernova Models

Kazuhiro Hayama, Takami Kuroda, Kei Kotake, Tomoya Takiwaki

One example of their results : used numerical simulation result T. Kuroda, T. Takiwaki, and K. Kotake, Phys. Rev. D 89, 044011 (2014), arXiv:1304.4372

20

40

60

time [ms]

80

100

1.5

group ID

2.5

With external trigger

Multi-messenger astronomy

2D Numerical simulation Suwa et. al. 2013 progenitor mass:11.2M⊙ Rapid core rotation model

Bring us the inner core information. Identify the characteristics waveform for each phase

Time form gravitational collapse[s]

- Time domain astronomy with multi-messanger
- Understand the mechanism from concurrent analysis
 - Inner core information by GW and Neutrino

Multi-messenger astronomy

2D Numerical simulation Suwa et. al. 2013 progenitor mass:11.2M⊙ Rapid core rotation model

Bring us the inner core information. Identify the characteristics waveform for each phase Characteristics of SASI phase? Time form gravitational collapse[s]

- Time domain astronomy with multi-messanger
- Understand the mechanism from concurrent analysis
 - Inner core information by GW and Neutrino

Core rotation from GW

- Hayama et.al. 2008, E.Abdikamalov et. al. Phys.Rev.D90,044001
- Extraction core rotation condition by preparing many template (~100)

Rotation low : $\Omega(\omega) = \Omega_c \left[1 + \left(\frac{\omega}{A}\right)^2 \right] \quad \text{where}$

- Ω_c : the initial central angular velocity [rad/s] ω : cylindrical radius[km]
- A : Parameter, control the degree of differential rotation[km]
- Search the best-fitting template with given SNR equation

Probing core rotation - motivation-

- Submitted to ApJ (arXiv : 1410.2050)
- Focus on **GW observed time**(t_obs_gw) and **Neutronization burst time**(t_obs_nburst)
- Supernova detection simulation with KAGRA and EGADS/SK+Gd detector

Probing core rotation -detectors-

Robust analysis Simple search, single detector

Study with KAGRA and EGADS/SK+Gd Location -in the same mountain Neutron tagging

GW analysis Excess power filter + Short Time Fourier Transform Generate signal s(t)=h(t)+n(t) Search window which give SNR>8

$$\rho = \sqrt{\frac{\int s^*_w(f) \cdot s_w(f) df}{\int < n^*_w(f) \cdot n_w(f) > df}}$$

$$p_0 = \sqrt{rac{\int n_w^*(f) \cdot n_w(f) df}{\int \langle n_w^*(f) \cdot n_w(f) \rangle df}}$$

- Estimation of Signal to Noise Ratio

$$\frac{S}{N} = \frac{\mu - m}{\sigma}$$

m : mean of ρ 0 dist. (~1.0) σ : deviation of ρ 0 dist. (~0.06) μ : ρ value (signal power)

Probing core rotation -detectors-

Robust analysis Simple search, single detector

Expect event rate [Event/1ms/10kpc]

0.005

0.004

0.003

0.002

0.001

Study with KAGRA and EGADS/SK+Gd Location -in the same mountain Neutron tagging

Neutrino analysis generate signal with Poisson statistics search window which give max number of observation electron neutrino

50

Probing core rotation -time epoch-

GW - Nu epoch : 1.0 pi rad/s

0.0 pi rad/s

0.0 pi rad/s

Probing core rotation -result1-

For "Strong" core rotation model:

Preliminary	KAGRA det. eff.[%]	EGADS Nburst[%]	SK+Gd Nburst[%]	Evaluate rotation[%]	
0.2kpc uniform	88.0	100		98.4	
1.0kpc uniform	73.6	40.2		80.00	
Galactic Center	21.5	-	94.8	75.3	
Galaxy distribution	26.7		81.7	76.2	

- For neutrino detector, identification probability of neutronization burst is described

- In 0.2 or 1.0 kpc, current SK DAQ may not work correctly
- In GC, a few of electron neutrino will be observed
- KAGRA analysis
 - First window which satisfied SNR>8
- Galactic Center
 - decl : -28°56'10.23", 10kpc
- Galaxy distribution :

 $\begin{array}{l} \begin{array}{l} \mbox{exponential disk model} \\ \mbox{dN} \propto R \ dR \ dz \ e^{-\frac{R^2}{2R_0^2}} e^{-\frac{|z|}{h}} \\ \mbox{where, } R_0 \sim 3.5 \mbox{kpc, } h \sim 320 \mbox{pc} \end{array}$

Probing core rotation -result2-

For "No" core rotation model:

Preliminary	KAGRA det. eff.[%]	EGADS det. eff.[%]	SK+Gd det. eff[%]	Evaluate rotation[%]
0.2kpc uniform	74.8	100	-	0.0
1.0kpc uniform	46.5	46.8		20.8
Galactic Center	0.0		97.5	NaN
Galaxy distribution	1.5		84.6	0.2

 For neutrino detector, identification probability of neutronization burst is described

- In 0.2 or 1.0 kpc, current SK DAQ may not work correctly
- In GC, a few of electron neutrino will be observed
- KAGRA analysis
 - First window which satisfied SNR>8
- Galactic Center
 - decl : -28°56'10.23", 10kpc
- Galaxy distribution :

 $\begin{array}{l} \underline{\text{exponential disk model}} \\ dN \propto R \ dR \ dz \ e^{-\frac{R^2}{2R_0^2}} e^{-\frac{|z|}{h}} \\ \\ \text{where, } R_0 \sim 3.5 \text{kpc, } h \sim 320 \text{pc} \end{array}$

- KAGRA status
 - iKAGRA observation will start at the end of this year
 - Installation work is going on
- Analysis strategy
 - Event reconstruction : Expand to TF plane and clustering
 - Multi detectors : Coherent Network Analysis
- Messages from Supernova
 - Core bounce from GW
 - Template tuning and extract the rotation power
 - Coincidence analysis with neutrino and GW

GWPAW 2015@ Osaka

Date: 17-20 June, 2015 Venue: INTEX-Osaka International Conference Hall

of Gravitational Wave d

Matthew Evans (LIGO), Francesco Piergiovanni (Virgo), Takaaki Kajita (KAGRA) Martin Hewitson (eLISA & LPF), Masaki Ando (DECIGO), Dick Manchester (PTAs)

Counterpart/follow-up

Edo Berger (Short GRB), Shrinivas Kulkarni (Optical-Infrared-radio) Peter Meszaros (X, Gamma), Mark Vagins (Neutrino)

GW Data Analysis and Theory

Alessandra Buonanno (GW modeling), Maria Alessandra Papa (Data analysis) David Merritt (Sources for low frequency GW) Bruce Allen (Summary talk and organizer of discussion)

