

山田 章一 早稲田大学先進理工学部

Introduction

Fundamentals of Core-Collapse Supernovae

Triggered by the gravitational collapse of massive stars $M \gtrsim 8 M_{\odot}$ Pre-explosion One of the most energetic phenomena in the Universe $E_G \sim 10^{53} \text{ergs}, \quad E_K \sim 10^{51} \text{ergs}, \quad E_\gamma \sim 10^{49} \text{ergs}$ Important for chemical evolutions in the universe. - nucleosynthesis of heavy elements Sites for a variety of emissions - neutrinos, gravitational waves, cosmic rays, UV, X-rays, gamma-rays in addition to optical photons

Scenario of Core-Collapse Supernovae

Some Scales of Relevance

✓ Length Scales

stellar radius: stellar core radius: neutron star radius: v mean free path:

$$10^{12} \sim 10^{14} \text{cm}$$

$$10^{8} \sim 10^{9} \text{cm}$$

$$\sim 10^{6} \text{cm}$$

$$\sim 10^{6} \text{cm} \left(\frac{\varepsilon_{\nu}}{10 \text{MeV}}\right)^{-2} \left(\frac{\rho}{10^{12} \text{g/cm}^{3}}\right)^{-2}$$

✓ Neutrinos are effectively trapped in the core at ρ ~10¹¹g/cm³.

 \checkmark β-equilibrium is established by weak interactions at ρ ~10¹²g/cm³.

v wave length:
$$\sim 20 \text{fm} \left(\frac{\varepsilon_{\nu}}{10 \text{MeV}} \right)^{-1}$$

✓ Neutrinos are normally treated as classical particles except in considering neutrino oscillations.

nuclear radius: $\sim 5 \operatorname{fm} \left(\frac{A}{56}\right)^{1/3}$

- ✓ Nuclei scatter neutrinos coherently if they are much smaller than the neutrino wave length.

Some Scales of Relevance

✓ Energy Scales

est mass energy:
$$10^{54} \text{erg} \left(\frac{M_{\text{core}}}{M_{\odot}}\right)$$

gravitational energies:
pre-collapse core: $-10^{51} \text{erg} \left(\frac{M_{\text{core}}}{M_{\odot}}\right)^2 \left(\frac{R_{\text{core}}}{10^8 \text{cm}}\right)^{-1}$
neutron star: $-10^{53} \text{erg} \left(\frac{M_{\text{core}}}{M_{\odot}}\right)^2 \left(\frac{R_{\text{NS}}}{10^6 \text{cm}}\right)^{-1}$

shock wave energy at core bounce: $\sim \text{several} \times 10^{51} \text{erg}$

- ✓ The gravitational energy is mostly cancelled by the internal energy and the shock energy is a small residual.
- ✓ The internal energy is radiated as neutrinos later.

nuclear dissociation energy: $\sim 9 MeV \text{ per baryon} \sim 10^{51} erg \text{ per } 0.1 M_{\odot}$

✓ The shock energy is consumed mainly to dissociate nuclei.
 ✓ The shock is commonly stalled in the core.

Some Scales of Relevance

✓ Time Scales

life time of massive stars: $\leq 10^7 \text{yrs}$ dynamical time scale: $\sim 10 \text{msec} \left(\frac{\rho}{10^{12} \text{g/cm}^3}\right)^{-1/2}$ v diffusion time: $\sim 100 \text{msec} \left(\frac{R_{\text{core}}}{3 \times 10^6 \text{cm}}\right)^2 \left(\frac{\varepsilon_{\nu}}{10 \text{MeV}}\right)^2 \left(\frac{\rho}{10^{14} \text{g/cm}^3}\right)$

✓ The internal energy of proto neutron star is available for explosion only on this time scale, much longer than the dynamical time scale.

cooling time scale of proto neutron star:

$$\sim 10 \operatorname{sec}\left(\frac{E_{\mathrm{PNS}}}{10^{53} \mathrm{erg}}\right) \left(\frac{L_{\nu}}{10^{52} \mathrm{erg/s}}\right)^{-1}$$

neutrino luminosities: $L_{\nu} \sim 2 \times 10^{52} \text{erg/s} \left(\frac{R_{\text{PNS}}}{10^{6} \text{cm}}\right)^{2} \left(\frac{T_{\nu}}{4 \text{MeV}}\right)^{4}$

Challenges in Supernova Research

✓ The difficulty lies in transforming energies: gravitational energy → internal energy → kinetic energy

rotational energy

magnetic energy

✓ At present, the neutrino-heating mechanism is supposed to be most promising.

- Magnetorotational mechanism may be necessary to give hypernovae with explosion energies of ~10⁵²ergs.
- Acoustic mechanism may work if nothing else succeeds in explosion.

Multi-dimensional hydrodynamics is supposed to play a crucial role.

- 3D dynamics, particularly instabilities such as v-driven convections, standing accretion shock instability (SASI), magneto-rotational instability (MRI), etc.
- Multi-dimensional v transfer
- rotation

Neutrino Heating Mechanism

Meridian Section of Core

 Most of the liberated gravitational energy is stored in the proto neutron star as internal energy, which can be tapped by neutrinos.

$$-E_G \sim E_{int} \sim 10^{53} \mathrm{erg}$$

The initial shock energy is not large enough to push through the outer core. The shock is stalled inside the core and becomes an standing accretion shock.

✓ Neutrinos cool matter near the proto neutron star and heat mattre near the shock. The gain radius divides the two regions.

✓ The spherically symmetric configuration is unstable and becomes non-spherical spontaneously.

Neutrino Heating Mechanism: why does it work?

✓ Neutrino Heating Rate

 $Q_{\nu}^{+} \approx 160 \text{Mev/s} \frac{\rho}{m_{a}} \frac{L_{\nu_{e},52}}{r_{7}^{2} \langle \mu_{\nu} \rangle} \left(\frac{T_{\nu_{e}}}{4 \text{MeV}}\right)^{2}$

✓ Neutrino Cooling Rate $Q_{\nu}^{-} \approx 145 \text{Mev/s} \frac{\rho}{m_{a}} \left(\frac{T}{2 \text{MeV}}\right)^{6}$

$$T_{H=C} \propto r^{-1/3}$$

✓ Heating balances cooling inside v-sphere.
 ✓ In matter-dominated region, *T* is nearly constant whereas *T* is proportional to 1/*r* in radiation dominated region.

✓ Gain radius occurs in RD regime as long as shock is located far enough.

Criterion for Successful Neutrino Heating

- ✓ For a given accretion rate, there is a critical neutrino luminosity, at which the stalled shock wave revives.
 - There is a neutral radial mode at the critical luminosity.
 - SASI sets in earlier than radial modes.
- ✓ The critical neutrino luminosity may be obtained from: τ_{adv} = τ_q

 $\tau_{\rm adv}$: advection time $\tau_{\rm q}~$: heating time

✓ The critical luminosity is lower for 2D/3D than for 1D by enhanced v-heating owing to efficient feeding of cold matter and longer dwell time in turbulence.

 $\tau_{\rm adv} = \tau_q$

A Brief Review of the Research on CCSN Mechanism

Brief History of Supernova Research

Time Line	No Rotation or	Rapid Rotation and/or	
	1D	2D/3D	Magnetic Fields
1934	Birth of SN theory Baade & Zwicky '34		
1960s - early 1970s	Dawn of SN modelling Colgate & White ' 66 Arnett ' 67		First 2D simulations LeBlanc & Wilson ' 70
			Some early discussions on magneto-rotational scenario Bisnovatyi-Kogan et al. '76 Meier et al. '76
1975	Beginning of Modern Theory		
	Neutrino-trapping Sato ' 75		

Time Line	No Rotation or	Rapid Rotation and/or		
	1D	2D/3D	Magnetic Fields	
late 1970s – late 1980s	Prompt Explosion	Recognition of importance of non-sphericity Epstein '78		
	vs Delayed Explosion Hillebrandt ' 84 Wilson ' 82	Early simulations of convection Livio et al. '81 Smarr et al. '81	Rare 2D simulations Symbalisty ' 84	
<mark>1987</mark>	SN1987A			
	Confirmation of Modern Theory	Discoveries of mixing in envelope and global non-sphericity		
1990s	More precise treatment of neutrino transport Mezzacappa et al. '93 Yamada et al. '97	Beginning of modern multi-D Simulations Herant et al. ' 94	Simulations of rapidly rotational collapse Moenchmeyer et al. '91 Yamada & Sato '94	
	Criterion for explosions via neutrino-heating mechanism Burrows & Goshy ' 93			

Time Line	No Rotation or S	Rapid Rotation and/or		
	1D	2D/3D	Magnetic Fields	
late 1990s - early 2000s	State-of-the-art simulations Liebendoerfer et al. '01 Rampp et al. '00 Thompson et al. '03 Sumiyoshi et al. '05	Discovery of SASI Blondin et al. ' 03	Introduction of MRI to SN theory Akiyama & Wheeler ' 03 Simulations of magneto- rotational collapse Yamada & Sawai ' 04	
latter half of 2000s up to present	Black-hole-forming collapse Sumiyoshi et al. ' 06	Multi-D simulations with sophisticated neutrino transport Neutrino-heating mechanism Marek et al. '07 Bruenn et al. '06 Ott et al. '08 Acoustic mechanism Burrows et al. '07	Rotational and magneto- rotational collapses with neutrino transport Walder et al '05 Burrows et al. '07 Magneto-rotational collaps in GR Shibata et al. '06 3D magneto-rotational collapse Mikami et al. '08	

Progenitor Mass	MPA	Oak Ridge	Arizona
8.8M _{solar} ONeMg core (Nomoto'84)	v-heating without SASI t _{exp} ∼<100ms E _{exp} ~10 ⁵⁰ erg at t _{pb} ~800ms		
11M _{solar} (Woosley et al. '95)		v-heating with SASI + nucl. burning (%no explosion without nucl. burning) t _{exp} ~100ms E _{exp} ~10 ⁵¹ erg at t _{pb} ~700ms	acoustic mechanism (※no explosion via neutrino heating) t _{exp} ~500ms E _{exp} : unavailable but maybe small
11.2 (Woosley et al. '02)	v-heating with SASI t _{exp} ~100ms E _{exp} ~10 ⁴⁹ erg at t _{pb} ~220ms		acoustic mechanism (%no explosion via neutrino heating) t _{exp} ~1100ms E _{exp} : unavailable but maybe small

Progenitor Mass	MPA	Oak Ridge	Arizona
13M _{solar} (Woosley et al. '02)			acoustic mechanism (※no explosion via neutrino heating) t _{exp} ~1300ms E _{exp} : unavailable but maybe small
13M _{solar} (Nomoto et al. '88)			acoustic mechanism (※no explosion via neutrino heating) t _{exp} ~1100ms E _{exp} : unavailable but maybe small
15M _{solar} (Woosley et al. '02)			acoustic mechanism (%no explosion via neutrino heating) t _{exp} ~1100ms E _{exp} : unavailable but maybe small

Progenitor Mass	MPA	Oak Ridge	Arizona	
15M _{solar} (Woosley et al. '95)	v-heating with SASI t _{exp} ~500ms E _{exp} ~10 ⁴⁹ erg at t _{pb} ~700ms	v-heating with SASI + nucl. burning (%no explosion without nucl. burning) t _{exp} ~500ms E _{exp} ~0.3x10 ⁵¹ erg at t _{pb} ~700ms		
20M _{solar} (Woosley et al. '02)	× up to t _{pb} =250ms (※90deg. Wedge)		acoustic mechanism (※no explosion via neutrino heating) t _{exp} ~1300ms E _{exp} : unavailable but maybe small	
25M _{solar} (Woosley et al. '02)			acoustic mechanism (※no explosion via neutrino heating)	

- ✓ No model is studied by three groups.
- It is unclear why Arizona group does not observe neutrino heating mechanism for the models, for which another group does.
- The computations by MPA and Oak Ridge groups may be too short to see the acoustic revival.

✓ List of successful shock revival (from Kotake '12)

Progenitor	Group	Mechanism	Dim.	tap	$E_{ap}(B)$	ν transport
	(Year)		(Hydro)	(ms)	Gitpb (ms)	(Dim, O(v/c))
	MPA	₽-driven	1D(2D)	~ 200	0.1	Boltzmann
8.8 M _D	(2006,2011)		(PN)		(~800)	2, $O(v/c)$
(NH88)	Princeton+	ν-driven	2D	$\lesssim 125$	0.1	MGFLD
	(2006)		(N)		-	1, (N)
$10 M_{\odot}$	Basel	$\nu + (QCD)$	1D	255	0.44	Boltzmann
(WHW02)	(2009)	transition)	(GR)		(350)	2, (GR)
11 M _☉	Princeton+	Acoustic	2D	$\gtrsim 550$	~0.1*	MGFLD
(WW95)	(2006)		(N)		(1000)	1, (N)
	MPA	ν-driven	2D	~100	~ 0.005,0.025	"RBR" Boltz-
11.2 M_{\odot}	(2006,2012)		(PN,C-GR)	~ 200	~200,900	mann, 2, $O(v/c)$
(WHW02)	Princeton+	Acoustic	2D	≥1100	~0.1*	MGFLD
	(2007)		(N)		(1000)	1, (N)
1	Tokyo+	v-driven	3D	~100	0.01	IDSA
	(2011)		(N)		(300)	1, (N)
$12 M_{\odot}$	Oak Ridge+	₽-driven	2D	~300	0.3	"RBR" MGFLD
(WHW02)	(2009)		(PN)		(1000)	1, O(v/c)
13 M _o	Princeton+	Acoustic	2D	≳1100	~0.3*	MGFLD
(WHW02)	(2007)		(N)		(1400)	1, (N)
(NH88)	Tokyo+	v-driven	2D	~ 200	0.1	IDSA
	(2010)		(N)		(500)	1, (N)
15 M _o	MPA	v-driven	2D	~600	0.025,0.125	Boltzmann
(WW95)	(2009,2012)		(PN,C-GR)	~400	(~700,800)	2,O(v/c)
(WHW02)	Princeton+	Acoustic	2D	-	-	MGFLD
-	(2007)		(N)		(-)	1, (N)
	OakRidge+	ν-driven	2D	~300	~ 0.3	"RBR" MGFLD
	(2009)		(PN)		(600)	1,O(v/c)
20 M _o	Princeton+	Acoustic	2D	≳1200	~0.7*	MGFLD
(WHW02)	(2007)		(N)		(1400)	1, (N)
$25 M_{\odot}$	Princeton+	Acoustic	2D	≳1200	-	MGFLD
(WHW02)	(2007)		(N)		(-)	1, (N)
	Oak Ridge+	v-driven	2D	~300	~ 0.7	"RBR" MGFLD
	(2009)		(PN)		(1200)	1, $O(v/c)$

✓ MMCOCOS 2013

- ✓ More recently,
 - MPA group added 2D GR simulations:
 - ▶ 8.1M_{solar} (Heger+12, Z=10⁻⁴)
 - 9.6M_{solar} (Heger, Z=0) O
 - 25 M_{solar} (WHW02, Z_{solar}) ×
 - 27 M_{solar} (WHW02, Z_{solar}) \odot

They also reported 3D simulations for 11.2M_{solar}(WHW02)

- 20M_{solar}(WH07)
- 27M_{solar}(WHW02)

which has not exploded so far.

Recent 2D Models

√Nakamura et al. '14:

more than 350 models in 2D

- Solar-metallicity stars (s) : 101 models
 M_ZAMS = 10.8 40.0 + 75.0 Msun
- UMP (Zsun/10⁴) stars (u) : 247 models
 M_ZAMS = 11.0 60.0 + 75.0 Msun
- Zero-metallicity stars (z) : 30 models
 M_ZAMS = 11.0 40.0 Msun

investigate the systematics of shock revival by neutrino heating

- shock revival obtains more often than not
- importance of compactness
- Horiuchi et al. '14 proposed a possible solution to the RSG problem and the SN rate problem.

Ab Initio 2D Simulations for Various Progenitors

- ✓ Shock radii are not monotonous with ZAMS.
- The compactness parameter again seems to be the best measure for the explosion properties.
 * t400 is the time when the average shock radius reaches R = 400km.

✓ Beware: it is too early to judge the final outcomes. Longer simulations with an appropriate physics included are needed.

3D Models

✓<u>Takiwaki, Kotake, Suwa '14:</u>

• 11.2 M_{sun} progenitor (Woosley, Heger, Weaver, 2002)

Next Talk !

• IDSA scheme, LS220 EOS

- $\checkmark\,$ 2D is easier to explode.
 - In 2D, coherent motions develop along "the axis".
 - In 3D, kinetic energy "cascades" via turbulence into smaller scale.
- ✓ Systematic studies like those by Nakamura et al. in 2D are mandatory also in 3D!

What makes these differences after all?

- ✓ After many years of failed attempts to produce supernova explosions on computer, we now have a large number of models that lead to successful shock revival.
 - More than a hundred 2D models have been computed for a wide range of progenitor masses and metallicities, and shock revival has been observed more often than not.
 - There are some 3D models, e.g. 11.2M_{solar} model by Takiwaki et al. '13, which are reported to yield a successful shock revival.
- ✓ Ever increasing computer power as well as more elaborate numerical schemes for v transfer are mainly responsible for the "differences".
 - In earlier simulations, computations were just too short and the choices of progenitor and/or EOS were also unlucky.
 - Ray-by-ray approximation, IDSA, FLD have made longer computations easier.
 - Lighter progenitors and/or softer EOS's are better for shock revival.
 - The importance of nuclear network calculations was disputed.
 - Although sophistications in the treatment of v reactions and GR were often claimed to be important, it is unclear if they were the critical elements for the "differences".
 - e.g. non-isoenergetic scatterings on nucleons

Words of Caution

- ✓ The current situations remind me of those in the 1990's, when realistic 2D simulations had just begun and optimism prevailed in the society based on some results.
 - The early expectations fizzled as numerical methods were sophisticated.
- There are still some discrepancies between different groups, which may not be surprising, provided the different approximations to multi-dimensional v transfer, treatments of various neutrino reactions and GR gravity.
 - For some progenitors, the success of v-heating mechanism itself is challenged.
 - Even if different groups agree on the success of v-heating mechanism, when and how shock revival occurs as well as the subsequent behavior of the revived shock wave are not agreed on.
 - It is also still inconclusive whether 3D is more advantageous for shock revival than 2D.
- ✓ All multi-dimensional simulations done so far employed approximations of various levels for neutrino transfer.
 - ▶ ray-by-ray, FLD, IDSA, leakage, light bulb
- ✓ Shock revival is a necessary but not a sufficient condition for successful SN explosions.
 - Observed explosion energy and nucleosynthetic yields should be reproduced.

When and How the Explosion Energy is Fixed?

 \checkmark This is an important issue to to be settled now.

- We have a large number of models to give shock revival.
- The diagnostic explosion energy differs significantly from model to model at the end of simulations (t_{pb}~1sec).
- Some of them appear promising. But are they really explode with appropriate energy and luminosity?

✓ Note that shock revival is a necessary condition for successful explosion but may not be a sufficient one indeed.

- Numerical experiments demonstrated that it takes a few seconds until the explosion energy is fixed.
- The mass of nickel to be ejected tends to be settled even later.
- The explosion energy and nickel mass are functions of shock revival time and there appears to be a relatively narrow window that gives right values to them.

Shock revival may not be sufficient!

Yamamoto et al. '12:

- ✓ Assuming that shock revival occurs somewhere on the critical line, they study the explosion energy & synthesized ⁵⁶Ni mass as a function of the shock revival time in 1D and 2D simulations.
 - long-term simulations of post-shock-revival evolutions of ejecta
 - nuclear reactions and their feedback to dynamics taken into account consistently with a non-NSE EOS.

 \checkmark It takes about 1 ~ 3 sec until the explosion energy is finally settled.

- The weaker the explosion is, the longer it takes.
- ▶ 2D is similar.

Shock revival may not be sufficient! Yamamoto et al. '12:

✓ Appropriate explosion energy and ⁵⁶Ni mass are obtained for a rather narrow range of shock-revival time.

1D may be inappropriate also in this sense.

✓ The Inner boundary condition is a major source of uncertainty and fully self-consistent computations are definitely necessary and possible in 2D now.

Multi-Dimensional v Transport

✓ Boltzmann equation: $p^{\mu} \frac{\partial f(x,p)}{\partial x^{\mu}} + \frac{dp^{i}}{d\lambda} \frac{\partial f(x,p)}{\partial p^{i}} = \left(\frac{\delta f(x,p)}{\delta\lambda}\right)$

 \checkmark Self-consistency is a necessary condition but not a sufficient one. Multi-D v transfer has been approximated one way or another so far.

 \checkmark The effect of the approximation in v transfer should be assessed by better treatments.

Iessons from 1D simulations: any approximation in v transfer may have consequences.

- ✓ So far the best neutrino transfer code in multi-D is the 2D Boltzmann solver based on the S_N method by the Arizona-Princeton-Jerusalem collaboration: Ott et al. '08, Brandt et al. '11
 - ▶ No v/c corrections
 - ▶ no energy-redistribution by inelastic scatterings: Lentz et al. '12
- \checkmark Neglect of v/c corrections leads to a qualitatively wrong behavior of neutrino fluxes and, as a consequence, of lepton fractions.
 - In the Boltzmann transfer, neutrinos co-move with matter in the optically thick region as a result of v/c corrections.

Multi-Dimensional v Transport with a Boltzmann Solver

 ✓ Nagakura, Iwakami et al. '15 in preparation: a multi-D Boltzmann solver in the mixed-frame formulation.

We are going to run this and 11.2M_{solar} models on \bar{R} supercomputer from this April with the resolution $N_r \times N_\theta \times N_\phi \times N_{\varepsilon_\nu} \times N_{\theta_\nu} \times N_{\phi_\nu} = 384 \times 128 \times 20 \times 10 \times 6$.

Stay Tuned!

- ✓ We are now in a new era, in which we have a lot of models that produce shock revival. 3D simulations will be the focus in the years to come. But other issues are no less important.
 - We are able to study systematics of shock revival.
 - We can afford long term simulations, which investigate the dynamics that follows shock revival.
 - Improvement in the treatment of neutrino transfer should be pursued further to validate the results obtained so far.
- ✓ Although the neutrino heating mechanism is currently the most promising, we had better not forget other possibilities.
 - High-energy (> ~10⁵²ergs) supernovae will not be produced by the neutrino heating mechanism.
 - Some of massive stars may be rapidly rotating.
 - New ideas are always welcome.
- ✓ Neutrino and GW carry valuable information on the physical processes going on deep inside massive stars, which could not be assessed otherwise.
 - v and GW observations combined may give us the key quantities to approve or refute the neutrino heating mechanism.
 - EM observations are indispensable even in BH formations to provide much needed information on the structure of progenitors.