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一般相対性理論(GR)の検証：

Gµ�(+�gµ�) =
8�G

c4
Tµ�

Einstein方程式

が、自然界（物理実験と宇宙観測）と合うのか？

１　イントロ

出典：wikipedia



非線形の連立偏微分方程式なので

2体（連星系）でさえ厳密解は無理

（注）１体系（シュバルツシルト解やカー解）周り
の性質や定式化（BH摂動法）は知られている



GRにおける近似法（摂動計算）が用いられる。

例）Post-Newton近似

Slow Motion

Weak Field

V

c
� 1

GM

c2R
� 1

太陽系はほとんど曲がっていないので、
(背景時空としての)Minkowski時空周りの摂動を考える

(� 10�4)

(� 10�5 � 10�8)

例：地球の公転

例：太陽や惑星



gµ� = �µ� + g1PN
µ� + g2PN

µ� + g2.5PN
µ� + g3PN

µ� + g3.5PN
µ� + · · ·

1/c2 1/c4 1/c5 1/c6 1/c7

例えば、調和座標条件

�h̄µ� =
16�G

c4
�µ�

�µh̄µ� = 0 (h̄µ� �
�
�ggµ� � �µ�)

を課すと、波動方程式の形

（遅延グリーン関数を用いて解けるように見えるが）

Tµ� + O(h̄2)



1PNの計量の係数の値は「理論」に依存する

仮定(陽)　ポテンシャルはPoisson方程式に従う

２　PPPPNN  ((PPaarraammeetteerriizzeedd  ppoosstt--NNeewwttoonn))の定式化

Will and Nordtvedt (1972)Eddington (1922)

仮定(陰)　ポテンシャルはParityを破らない

１０個のパラメタ



their expected background values, and the perturbations assigned an appropriate order
of smallness each. For theories containing a metric the appropriate expansion is usually

g
00

= �1 + h(2)

00

+ h(4)

00

+ O(6) (61)

g
0i = h(3)

0i + O(5) (62)

gij = �ij + h(2)

ij + O(4), (63)

where superscripts in brackets denote the order of smallness of the term. If, for example,
the theory contains an additional scalar field, then the usual expansion for this quantity
is

� = �
0

+ '(2) + '(4) + O(6), (64)

where �
0

is the constant background value of �. Additional vector and tensor gravita-
tional fields can be specified in a corresponding way.

The energy-momentum tensor in the PPN formalism is then taken to be that of a
perfect fluid. To the relevant order, the components of this tensor are given by

T
00

= ⇢(1 + ⇧ + v2 � h
00

) + O(6) (65)

T
0i = �⇢vi + O(5) (66)

Tij = ⇢vivj + P �ij + O(6). (67)

Taking these expressions, the field equations for the theory in question, and substituting
in the perturbed expressions for the dynamical fields in the theory, as prescribed above,
the field equations can then be solved for order by order in the smallness parameter.

The first step in such calculations is usually to solve for h(2)

00

. With this solution in

hand, one then proceeds to solve for h(2)

ij and h(3)

0i simultaneously, and finally h(4)

00

can be
solved for. If additional fields exist, beyond the metric, then these quantities must also

be solved for to increasing order of smallness as the calculation proceeds. In finding h(2)

ij ,

h(3)

0i and h(4)

00

one needs to specify a gauge. After such a specification one still, of course,
has the freedom to make additional gauge transformations of the form xµ ! xµ + ⇠µ,
where ⇠µ is O(2) or smaller. This freedom should be used at the end of the process to
transform the metric that has been obtained into the “standard post-Newtonian gauge”.
This is a gauge in which the spatial part of the metric is diagonal, and terms containing
time derivatives are removed. Once this has been done then one is in possession of the
PPN limit of the theory in question.

We have so far outlined the procedure that one needs to follow in order to gain the
appropriate form of the metric that couples to matter fields in the weak-field limit. Once
done, the result can then be compared to the ‘PPN test metric’ below:
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Newton (GM)



Will, LRR



３　１PPNN（太陽系）でのテスト

（１）光の曲がり
ds2 = gµ�dxµdx� = 0

4GM�
c2b

= 1.75”GR

2(1 + �)GM�
c2b

PPN

dr

d�
= F (r, gµ�)

Eddington (1919)

軌道方程式



Will, LRR



（２）水星の近日点移動

Bertrandの定理 (古典力学)

中心力で閉軌道になるポテンシャルは
2種類のみ（1/r、 r^2）

GR (or PPN)は、(GM/r c^2)^2　型なので
近日点が移動する



（3）Shapiroの時間の遅れ

平坦な時空に比べて、光が到着するまでに
余計に時間がかかる

ds2 = gµ�dxµdx� = 0

�t � 2(1 + �)M

�t =
� obs

emit
T (r, gµ�)dr � DEuclid

c
図（wikipedia）に加筆

dt = ・・・



Will, LRR



（4）ジャイロの歳差

Gravitomagnetism �Bg = �� (g0i�e
i)

Electromagnetism

(Einstein-) Lense-Thirring effect (1917)

�B = �� �A



Frame-dragging detection with 20% precision

Geodetic effect with 0.3% precision

Gravity Probe B (GPB)

“The full technical and data analysis details of GPB are expected to be published as a special 
  issue of Classical and Quantum Gravity in 2015” in Will, LRR

Everitt et al. PRL (2011)



GPB result はそれ以前の結果とも合う

LAGEOS 衛星 (Ciufollini et al. Nature 2004)

20 - 30 ％レベル

LARES(2012打ち上げ) が１%レベルを目標に運用中
(Ciufollini et al.  2013)



2.5PN（連星パルサー）を用いたテスト

GRでは、ポテンシャルの一部が波動方程式に従う

重力波

（電磁波と同様に）Poynting flux

�
�

ḣḣr2d�

重力波のLuminosity

1/r

d

dt
EBinary = �LGW

４　



連星の公転振動数の時間変化率

Will, LRR



Will, LRR
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Taylor and Weisberg (1989)を基に加筆



ボーナス
GRからの数式(1PNレベル)を用いて、

パルサー（中性子星）の質量が直接求まった！
（天文学の経験則を用いずに）

（注）ニュートン重力（ケプラーの第3法則）
では、「二つの質量の和」なので、
各質量を個別に決めるのは不可能



新しいPPNパラメタの導入
Alexander&Yunes (2007)

New Post-Newtonian Parameter to Test Chern-Simons Gravity

Stephon Alexander and Nicolas Yunes
Institute for Gravitational Physics and Geometry, Center for Gravitational Wave Physics and Department of Physics,

The Pennsylvania State University, University Park, Pennsylvania 16802, USA
(Received 9 April 2007; published 10 December 2007)

We study Chern-Simons (CS) gravity in the parametrized post-Newtonian (PPN) framework through a
weak-field solution of the modified field equations. We find that CS gravity possesses the same PPN
parameters as general relativity, except for the inclusion of a new term, proportional to the CS coupling
and the curl of the PPN vector potential. This new term leads to a modification of frame dragging and
gyroscopic precession and we provide an estimate of its size. This correction might be used in experi-
ments, such as Gravity Probe B, to bound CS gravity and test string theory.

DOI: 10.1103/PhysRevLett.99.241101 PACS numbers: 04.25.Nx, 04.50.+h, 04.80.Cc

Introduction.—Current astronomical observations, such
as the apparent acceleration of the Universe, suggest a
possible infrared modification to general relativity (GR).
In the same spirit, another unresolved problem of cosmol-
ogy, the cosmic baryon asymmetry, suggests a modifica-
tion of general relativity via the inclusion of a Chern-
Simons (CS) correction during the inflationary period [1].
This Chern-Simons correction is not an ad hoc extension,
but it is actually motivated by both string theory, as a
necessary anomaly-canceling term to conserve unitarity
[2], and loop quantum gravity [3]. Recently, imprints of
CS gravity have been investigated in the gravitational wave
spectrum of the cosmic microwave background (CMB),
where it was found to produce a circular, V-mode, polar-
ization, albeit marginally detectable [4]. Motivated by
observational signatures of string theory and loop-quantum
gravity, we will explore and develop a new observational
window to distinguish CS gravity from classical GR, which
is of direct interest to gravitational experiments currently
underway, such as Gravity Probe B (GPB) [5] and lunar
ranging [6].

A proven avenue for testing alternative theories of grav-
ity with current solar-system experiments is the parame-
trized post-Newtonian (PPN) framework [7]. This
framework considers weak-field solutions of the field equa-
tions of the alternative theory and expresses them in terms
of PPN potentials and parameters. The PPN potentials
depend on the details of the system under consideration,
while the PPN parameters can be mapped to intrinsic
parameters of the theory. Predictions of the alternative
theory can then be computed in terms of PPN parameters
and compared to solar-system experiments, leading to
stringent tests. One of the strengths of this framework is
its generality: a single supermetric with certain PPN pa-
rameters can be constructed to reproduce and test several
different alternative theories [7] (e.g., scalar-tensor, vector-
tensor, bimetri, c and stratified theories). Other tests of
alternative theories of gravity have also been proposed,
some of which require a gravitational wave detection and
shall not be discussed here [8–10].

In this Letter, we present a parametrized PPN expansion
of CS gravity to allow for tests with current solar-system
experiments. We discover that CS gravity demands the
introduction of only one new term to the PPN supermetric
and, thus, one new PPN parameter. This new term depends
both on an intrinsic parameter of CS gravity, as well as on
the curl of the PPN vector potential. Such a coupling of CS
gravity to gravitational vector currents had so far been
neglected. Furthermore, curl terms in the supermetric had
also been neglected by the PPN community because other
alternative theories had not required them. We find that this
new term captures the key physical effect of CS gravity in
the weak-field limit, leading to a modification of frame
dragging that could be used to test this GR extension with
GPB [5].

CS gravity in a nutshell.—CS gravity modifies GR via
the addition of a new term to the action, namely [11,12],

 SCS ! 1

16!G

Z
d4x

1

4
fR?R; (1)

where G is Newton’s gravitational constant, f is a pre-
scribed external quantity [13] (with units of squared length
in geometrized units) that acts as a coupling constant, R is
the Ricci scalar, and the star stands for the dual operation.
The modified field equations can be obtained by varying
the action with respect to the metric. These equations, in
trace-reversed form, are

 R"# " C"# ! 8!#T"# $ 1
2g"#T%; (2)

where C"# is a Cotton-like tensor, R"# is the Ricci tensor,
T"# is a stress-energy tensor, with T its 4-dimensional
trace, and Greek letters range over spacetime indices.
The Cotton tensor encodes the CS modification to GR:

 C"# ! $ 1!!!!!!!$g
p &f;$%$&'#"D&R#%' " #D$f;(%?R(

#" #%
$ ';

(3)

where parentheses stand for symmetrization, g is the de-
terminant of the metric, %$&'" is the Levi-Civita symbol
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Chern-Simons項を加える

linearity’’ is there in the superposition law of gravity.
Similarly, the parameter ! determines whether there are
preferred-location effects, while "i represent preferred-
frame effects. Finally, the parameters #i measure the
amount of violation of conservation of total momentum.
In terms of conservation laws, one can interpret these
parameters as measuring whether a theory is fully conser-
vative, with linear and angular momentum conserved (#i
and "i vanish), semiconservative, with linear momentum
conserved (#i and "3 vanish), or nonconservative, where
only the energy is conserved through lowest Newtonian
order. One can verify that in GR, $ ! % ! 1 and all other
parameters vanish, which implies that there are no
preferred-location or frame effects and that the theory is
fully conservative.

A PPN analysis of an alternative theory of gravity then
reduces to mapping its solutions to Eq. (5) and then deter-
mining the PPN parameters in terms of intrinsic parameters
of the theory. The procedure is simply as follows: expand
the modified field equations in the metric perturbation and
in the PN approximation; iteratively solve for the metric
perturbation to O"4# in h00, to O"3# in h0i and to O"2# in
hij; compare the solution to the PPN metric of Eq. (5) and
read off the PPN parameters of the alternative theory. We
shall employ this procedure in Sec. V to obtain the PPN
parameters of CS gravity.

III. CS GRAVITY IN A NUTSHELL

In this section, we describe the basics of CS gravity,
following mainly [29,30]. In the standard CS formalism,
GR is modified by adding a new term to the gravitational
action. This term is given by [29]

 SCS !
m2

pl

64&

Z
d4xf"?RR#; (6)

where mpl is the Planck mass, f is a dynamical field that is
prescribed externally [48] with units of squared mass (or
squared length in geometrized units), R is the Ricci scalar
and the star stands the dual operation, such that

 R?R ! 1
2R"%$'("%)*R$'

)*; (7)

with ()*'$ the totally-antisymmetric Levi-Civita tensor
and R)*'$ the Riemann tensor.

Such a correction to the gravitational action is interest-
ing because of the unavoidable parity violation that is
introduced. Such parity violation is inspired from CP
violation in the standard model, where such corrections
act as anomaly-canceling terms. A similar scenario occurs
in string theory, where the Green-Schwarz anomaly is
canceled by precisely such a CS correction [32], although
CS gravity is not exclusively tied to string theory. Parity
violation in CS gravity inexorably leads to birefringence in
gravitational propagation, where here we mean that differ-
ent polarization modes obey different propagation equa-

tions but travel at the same speed, that of light
[29,30,36,47]. If CS gravity were to lead to polarization
modes that travel at different speeds, then one could use
recently proposed experiments [17] to test this effect, but
such is not the case in CS gravity. Birefringent gravita-
tional waves, and thus CS gravity, have been proposed as
possible explanations to the CMB anisotropies [36], as
well as the baryogenesis problem during the inflationary
epoch [33].

The magnitude of the CS correction is controlled by the
externally-prescribed quantity f, which depends on the
specific theory under consideration. When we consider
CS gravity as an effective quantum theory, then the cor-
rection is suppressed by some mass scale M, which could
be the electroweak scale or some other scale, since it is
unconstrained. In the context of string theory, the quantity
f has been calculated only in conservative scenarios, where
it was found to be suppressed by the Planck mass. In other
scenarios, however, enhancements have been proposed,
such as in cosmologies where the string coupling vanishes
at late times [49–59], or where the field that generates f
couples to spacetime regions with large curvature [60,61]
or stress-energy density [28,47]. For simplicity, we here
assume that this quantity is spatially homogeneous and its
magnitude is small but non-negligible, so that we work to
first order in the string-theoretical correction. Therefore,
we treat _f as an independent perturbation parameter [62],
unrelated to (, the PN perturbation parameter.

The field equations of CS modified gravity can be ob-
tained by varying the action with respect to the metric.
Doing so, one obtains

 G)* $ C)* ! 8&T)*; (8)

where G)* is the Einstein tensor, T)* is a stress-energy
tensor and C)* is the Cotton tensor. The latter tensor is
defined via

 C)* ! % 1!!!!!!!%g
p &f;+(+"%")D"R*#% $ "D+f;,#?R,

")
+
*#';

(9)

where parenthesis stand for symmetrization, g is the deter-
minant of the metric, Da stands for covariant differentia-
tion and colon subscripts stand for partial differentiation.

Formally, the introduction of such a modification to the
field equations leads to a new constraint, which is compen-
sated by the introduction of the new scalar field degree of
freedom f. This constraint originates by requiring that the
divergence of the field equations vanish, namely

 D)C)* ! 1

8
!!!!!!!%g

p D*f"?RR# ! 0; (10)

where the divergence of the Einstein tensor vanished by the
Bianchi identities. If this constraint is satisfied, then the
equations of motion for the stress-energy D)T)* are un-

STEPHON ALEXANDER AND NICOLÁS YUNES PHYSICAL REVIEW D 75, 124022 (2007)
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Parityを破る

LAGEOS+GPBで制限される

PPPPNNの発展

 Jackiw&Pi (2003)

５　

Witten(1989) Ashtekhar et al (1989)



Possible Daily and Seasonal Variations in Quantum Interference Induced
by Chern-Simons Gravity

Hiroki Okawara, Kei Yamada, and Hideki Asada
Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

(Received 28 May 2012; published 4 December 2012)

Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on

the latitude and direction of the interferometer on Earth in orbital motion around the Sun. Daily and

seasonal variations in phase shifts are predicted with an estimate of the size of the effects, wherefore

neutron interferometry with !5 m arm length and !10"4 phase measurement accuracy would place a

bound on a CS parameter comparable to the Gravity Probe B satellite.

DOI: 10.1103/PhysRevLett.109.231101 PACS numbers: 04.80.Cc, 04.25.Nx, 04.50."h

Introduction.—It has long been a fundamental issue to
understand the interplay between quantum theory and
gravitational physics. The interplay is studied mostly by
theoretical experiments [1]. Corella, Overhauser, and
Werner (COW) [2] succeeded in a first experiment involv-
ing both the Plank constant h and the gravitational constant
G by using a neutron interferometer. In the COW experi-
ments, a neutron interferometer is tilted, such that a neu-
tron beam path I is higher above the surface of Earth than
the other path segment II, causing a gravitationally induced
phase shift of the neutron de Broglie waves on path II
relative to path I. The gravitationally induced phase shift
was experimentally observed [2,3]. In recent years, tech-
nological progress has been brought into quantum experi-
ments including neutron interferometers and quantum
optics. Current attempts to probe general relativistic effects
in quantum mechanics focus on precision measurements of
phase shifts in quantum interferometers (e.g., Ref. [4]).
Hogan has recently proposed an ambitious idea to use
quantum interferometers as an experimental probe of a
quantum spacetime at the Planck scale [5]. Quantum
experiments may play a role in probing an intermediate
regime between general relativistic gravity and Planck
scale physics.

Current astronomical observations, such as the apparent
accelerated expansion of the Universe, suggest a possible
infrared modification to general relativity. The Chern-
Simons (CS) correction is not an ad hoc extension, but it
is actually motivated by both string theory, as a necessary
anomaly-canceling term to conserve unitarity [6], and loop
quantum gravity [7]. Alexander and Yunes have recently
pointed out that CS gravity possesses the same parame-
trized post-Newton (PPN) parameters as general relativity,
except for the inclusion of a new term, proportional to the
CS coupling and the curl of the PPN vector potential [8,9].
They have also shown that this new correction might be
used in classical experiments, such as the Gravity Probe B
(GPB), to bound CS gravity and test string theory (see
Ref. [10] for an extensive review of CS modified gravity).

In contrast to approaches focusing on general relativistic
effects on quantum systems [1], we shall study CS gravity
in quantum experiments as another attempt to probe quan-
tum gravity. Nandi and his collaborators [11] have recently
discussed the quantum phase shift in Chern-Simons modi-
fied gravity, where an isolated gravitating body was con-
sidered. They have concluded that the induced shifts by the
spin of the body are too tiny to be observed. However,
Earth’s orbital angular momentum (!3#1040 kg $m2s"1)
is much larger than its spin angular momentum
(! 7# 1033 kg $m2 s"1). Both of the axial vectors may
play a role in CS gravity. Therefore, we consider gravita-
tionally interacting bodies in order to investigate the
quantum mechanical effects of Earth’s orbital angular
momentum in CS gravity. The main result of this Letter
suggests that a CS modified gravity theory may predict
daily and seasonal phase shifts in quantum interferometers,
which are in principle distinct from the general relativistic
effects. This feature can be currently used as a quantum
tool to probe CS gravity.
CS gravity.—CS gravity modifies general relativity via

the addition of a correction to the Einstein-Hilbert action,
namely [12,13],

SCS ¼ 1

16!G

Z
d4x

1

4
fR?R; (1)

where f is a prescribed external field (with units of area in
geometrized units) that acts as a coupling constant, R is the
Ricci scalar, and the star stands for the dual operation.
The weak-field solution to the CS modified field equa-

tions in PPN gauge is given by [8–10]

g00¼"1þ2U"2U2þ4!1þ4!2þ2!3þ6!4þOð6Þ;
(2)

g0i ¼ " 7

2
Vi "

1

2
Wi þ 2 _fðr# VÞi þOð5Þ; (3)

gij ¼ ð1þ 2UÞ"ij þOð4Þ; (4)
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地上実験（干渉計）で、
この新しいPPNパラメタを制限できないか？

(大河原広樹　2013年修士論文)



このラグランジアンから正準運動量は次のようにかける。

pi =
∂L

∂ẋi

= −mc2
∂

∂ẋi

(
h0k

ẋk

c
− ẋkẋk

2c2

)

= −mc2
(
1

c

∂ẋk

∂ẋi
h0k −

1

2c2
∂

∂ẋi
(ẋkẋk)
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(ẋk)
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= −mc2
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= −mch0i +mẋi (4.21)

したがって、ハミルトニアンは

H = −mch0ix
i +m(ẋi)2 +mc2

(
1 +

1

2
h00 + h0i

ẋi

c
− (ẋi)2

2c2

)

= −mch0ix
i +m(ẋi)2 +mc2 +

1

2
mc2h00 +mch0iẋ

i − 1

2
mẋiẋi

= mc2 +
1

2
mẋiẋi +

1

2
mc2h00

= mc2 +
1

2
m

(
pi +mch0i

m

)2

+
1

2
mc2h00

= mc2 +
1

2m
(p⃗+mc⃗h0)

2 +
1

2
mc2h00 (4.22)

このハミルトニアンの (4.22)をみると、1
2mc2h00はニュートン重力ポ

テンシャルを表しており、mc⃗h0が慣性系の引きずりを表しているのがわ
かる。また、mc2は静止エネルギーを表している項である。静止エネル
ギーmc2を除いたハミルトニアンによるシュレーディンガー方程式は

i! ∂
∂t
ψ =

(
1

2m

(
p⃗+mc⃗h0

)2
+

1

2
mc2h00

)
ψ (4.23)

17

それぞれ経路１と経路２を通るとその状態は次の通りである。

ψC1 = ψ0 exp

[(
−i

mc

!

∫

C1

h⃗0 · dr⃗
)
+

(
−i

mc2

2!

∫

C1

h00dt

)]
(4.24)

ψC2 = ψ0 exp

[(
−i

mc

!

∫

C2

h⃗0 · dr⃗
)
+

(
−i

mc2

2!

∫

C2

h00dt

)]
(4.25)

以上より、慣性系の引きずりmc⃗h0だけによる位相差∆は

∆ =
mc

!

(∫

C1

h⃗0 · dr⃗ −
∫

C2

h⃗0 · dr⃗
)

=
mc

!

∮

C

h⃗0 · dr⃗ (4.26)

レンス-ティリング (Lense-Thirring)の解として h⃗0 =
4MG
3c3R ω⃗ × r⃗が求め

られているので、これを代入することで位相差∆は

∆ =
mc

!
4MG

3c3R

∮

C

(ω⃗ × r⃗) · dr⃗

=
mc

!
4MG

3c3
1

R
ω⃗ ·

∮

C

r⃗ × dr⃗

=
mc

!
4MG

3c3
1

R
ω⃗ · 2S⃗

=
4m

3!
2MG

c2
1

R
ω⃗ · S⃗

=
4m

3!
Rg

R
ω⃗ · S⃗ (4.27)

となる。ここでRgはシュバルツシルト半径Rg =
2MG
c2 であり、Rは地球

半径、Gは重力定数、S⃗は経路の囲む面積ベクトルである。また、

スカラー三重積　
∮

C

(ω⃗ × r⃗) · dr⃗ = ω⃗ ·
∮

C

r⃗ × dr⃗　 (4.28)

幾何学的な面積の関係　 |r⃗ × dr⃗| = |r⃗||dr⃗| sin θ = 2|dS⃗| (4.29)

を使った。
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=
mc

~

I

C

~h0 · d~r

第5章 Quantum interference
in Chern-Simons(CS)
gravity

5.1 量子干渉効果
一般相対論的効果による量子力学的な干渉効果について
慣性系の引きずりによる位相差∆は

∆ =
mc

!

∮

C

h⃗0 · dr⃗ (5.1)

である。また、重力場は平坦な時空からのずれとして次のように表す。

gµν = ηµν + hµν (5.2)

また ηµν ≡ diag(1,−1,−1,−1), h⃗0 = (h01, h02, h03)とする。
ここで、位相差∆にストークスの定理を用いると

∆ =
mc

!

∫

S

(∇⃗ × h⃗0) · dS⃗ (5.3)

になる。

5.2 Chern-Simons gravity

一般相対論 (General Relativity:GR)の作用に Chern-Simons(CS)の効
果を加えて修正したCS重力の作用を次のようにかく。

SCS =
1

16πG

∫
d4x

1

4
fR⋆R (5.4)
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量子干渉実験を想定して



Possible altitudinal, latitudinal, and directional dependence of the relativistic
Sagnac effect in Chern-Simons modified gravity
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Toward a test of parity violation in a gravity theory, possible effects of Chern-Simons (CS) gravity on an
interferometer have been recently discussed. Continuing work initiated in an earlier publication [H.
Okawara, K. Yamada, and H. Asada, Phys. Rev. Lett. 109, 231101 (2012)], we study possible altitudinal
and directional dependence of relativistic Sagnac effect in CS modified gravity. We compare the CS effects
on Sagnac interferometers with the general relativistic Lense-Thirring (LT) effects. Numerical calculations
show that the eastbound Sagnac interferometer might be preferred for testing CS separately, because LT
effects on this interferometer cancel out. The size of the phase shift induced in the CS model might have an
oscillatory dependence also on the altitude of the interferometer through the CS mass parameter mCS.
Therefore, the international space station site as well as a ground-based experiment is also discussed.

DOI: 10.1103/PhysRevD.90.064036 PACS numbers: 04.25.Nx, 04.50.-h, 04.80.Cc

I. INTRODUCTION

Modifications of the theory of general relativity (GR)
have been of interest. Particularly, some modifications that
introduce second (or higher) order terms of curvature
tensors represent high-energy corrections to the Einstein-
Hilbert action. The Chern-Simons (CS) correction is one of
modified gravity models. The CS modification is not an
ad hoc extension, but it is actually motivated by both string
theory, as a necessary anomaly-canceling term to conserve
unitarity [1], and loop quantum gravity (LQG), as a
counterterm for the anomaly[2] and recently as the emer-
gence of the CS gravity when the Barbero-Immirzi param-
eter of LQG is promoted to a scalar field and the Holst
action is coupled to fermions [3]. CS modifications to
gravity were first formulated in 2þ 1 dimensions [4].
Several authors investigated the structure of these theories
in 3þ 1 dimensions to show that they could arise as a low-
energy limit of string theory [5]. The theory and formu-
lation of CS modified gravity have been discussed in a
number of papers (see [6] for a review), and possible
imprint of such a modification in the early universe has
been recently investigated. Moreover, there has been little
work on tests of such CS corrections in the present
Universe.
In nondynamical CS gravity, a scalar field is assumed to

be externally prescribed. It is often taken to be a linear
function of the coordinate time (as a canonical choice), and
induces parity violation in the theory. Nondynamical CS
gravity depends on a single free parameter [7–9]. The
constraint on this parameter with measurements of frame-
dragging of bodies orbiting the Earth has been discussed;
The proposal has been implemented by Ali-Haimoud and
Chen [10] to constrain CS gravity; Yunes and Spergel, and
Ali-Haimoud [11,12] have used double-binary-pulsar
measurements.

In addition to cosmological and astrophysical tests,
current attempts to probe general relativistic effects in
quantum mechanics focus on precision measurements of
phase shifts in quantum interferometers (e.g., [13]). Toward
a test of parity violation in a gravity theory beyond GR,
Okawara and his collaborators have recently studied a
possible constraint by neutron interferometers [14,15],
where they used Alexander and Yunes (AY) model. The
main purpose of the present paper is to improve the
previous results on the interferometers regarding two
points [14,15]. One improvement is that the present paper
considers an up-dated nondynamical CS model that has
been developed by Smith, Erickcek, Caldwell, and
Kamionkowski (SECK) [9] in order to study both interior
and exterior gravitational fields by a spinning object,
whereas the AY model assumes a point-like spinning
object. The SECK model can treat an extended source
of the gravitational field and, in some limit, it approaches
AYmodel. Because of including a mass parameter (through
a homogeneous solution to the field equation), the SECK
model shows oscillating behavior of the gravitational
potential along the radial direction of a central object.
As a result, we shall study altitudinal dependence of Sagnac
effect in the present paper. The other improvement is that
we consider Sagnac interferometers in optics. This is more
advantageous at present, mainly because it is relatively easy
to put at different places Sagnac interferometers compared
with neutron interferometers that need nuclear reactors as a
source of neutrons.
This paper is organized as follows. Section II briefly

reviews the SECK model of nondynamical CS gravity
theory and the relativistic Sagnac effect. In Sec. III, we
compute relativistic Sagnac effects in the CS model.
Section IV provides numerical calculations. Section V is
devoted to conclusion.

PHYSICAL REVIEW D 90, 064036 (2014)
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光干渉計（サニャック計など）でも原理的に可能



Scalar-Tensor Theories

(1) (Jordan-) Brans-Dicke (1955,1961)
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PPN Parameter γ and Solar System Constraints of Massive Brans-Dicke Theories

L. Perivolaropoulos
Department of Physics, University of Ioannina, Greece

(Dated: January 19, 2010)

Previous solar system constraints of the Brans-Dicke (BD) parameter ω have either ignored the
effects of the scalar field potential (mass terms) or assumed a highly massive scalar field. Here, we
interpolate between the above two assumptions and derive the solar system constraints on the BD
parameter ω for any field mass. We show that for ω = O(1) the solar system constraints relax for a

field mass m
>
∼ 20×mAU = 20× 10−27

GeV .

Scalar-Tensor (ST) theories [1] constitute a fairly
generic extension of General Relativity (GR) where the

gravitational constant is promoted to a field whose dy-
namics is determined by the following action [1, 2]

S =
1

16πG

∫

d4x
√
−g

(

F (Φ) R− Z(Φ) gµν∂µΦ∂νΦ− 2U(Φ)
)

+ Sm[ψm; gµν ] . (1)

where G is the bare gravitational constant, R is the
scalar curvature of the metric gµν and Sm is the action
of matter fields. The variation of the dimensionless func-
tion F (Φ) describes the variation of the effective grav-
itational constant. This variation (spatial or temporal)
is severely constrained by solar system experiments [3–
5]. The GR limit of ST theories is obtained either by
fixing F (Φ) = Φ0 ≃ 1 (Φ0 is a constant) or by freezing
the dynamics of Φ using the function Z(Φ) or the poten-
tial U(Φ). For example a large and steep Z(Φ) makes it
very costly energetically for Φ to develop a kinetic term
while a steep U(Φ) (massive Φ) can make it very costly
energetically for Φ to develop potential energy. In both
cases we have an effective freezing of the dynamics which
reduces the ST theory to GR.
ST theories have attracted significant attention re-

cently as a potentially physical mechanism[2, 6, 7] for
generating the observed accelerating expansion of the
universe (see Ref. [8, 9] and references therein). A sig-
nificant advantage of this mechanism is that it can natu-
rally generate an accelerating expansion rate correspond-
ing to an effective equation of state parameter weff that
crosses the phantom divide line w = −1 [6, 10, 11]. Such
a crossing is consistent with cosmological observations
and is difficult to obtain in the context of GR [12]. In
addition ST theories naturally emerge in the context of
string theories[13] and in Kaluza-Klein[14] theories with
compact extra dimensions[15].
A special case of ST theories is the Brans-Dicke (BD)

theory[16] where

F (Φ) = Φ (2)

Z(Φ) =
ω

Φ
(3)

For a massive BD theory we also assume a potential of
the form

U(Φ) =
1

2
m2(Φ− Φ0)

2 (4)

Clearly, the spatial dynamics of Φ can freeze for ω ≫ 1
or for m ≫ r−1 where r is the scale of the experiment
or observation testing the dynamics of Φ. For solar sys-
tem scale observations, the relevant scale is the Astro-
nomical Unit (AU ≃ 108km) corresponding to a mass
scale mAU ≃ 10−27GeV . Even though this scale is small
for particle physics considerations, it is still much larger
than the Hubble mass scale mH0 ≃ 10−42GeV required
for non-trivial cosmological evolution of Φ[7, 17].
Current solar system constraints[4, 18] of the BD pa-

rameter ω have been obtained under one of the following
assumptions:

• Negligible mass of the field Φ (m ≪ mAU):
In this case the relation between the observable
Post-Newtonian parameter γ (measuring how much
space curvature is produced by a unit rest mass)[18]
and ω is of the form [4, 19, 20]

γ(ω) =
1 + ω

2 + ω
(5)

This relation combined with the solar system con-
straints of the Cassini mission [5]

γobs − 1 = (2.1± 2.3)× 10−5 (6)

which constrain γ close to its GR value γ = 1, leads
to the constraint on ω

ω > 4× 104 (7)

Cassini衛星（Shapiro の時間遅れ）

ω > 40000

Bertotti et al (2003)

（2013年打ち上げのGAIAが10^{-6}レベルを目標に観測中)



(2) Horndeski Theory (1973)

Most general, stable Scalar-Tensor
with 2nd order E.O.M.

（bi-scalar-tensorへの拡張: Ohashi+,  ArXiv:1505.06029)
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II. ACTION AND FIELD EQUATIONS

In this section we provide a brief overview of the structure of the action and the field equations

of Horndeski’s gravity theory. The starting point of our derivation is the action, which takes the

form [18]

S =
5
∑

i=2

∫

d4x
√
−gLi[gµν ,φ] + Sm[gµν ,χm] . (1)

Here Sm denotes the matter action and χm collectively all matter fields. The gravitational part of

the action, which depends on the metric gµν and a single scalar field φ, is given as an integral over

the four-dimensional spacetime manifold, where the Lagrangian is composed of the terms

L2 = K(φ,X) , L3 = −G3(φ,X)!φ , L4 = G4(φ,X)R +G4X(φ,X)
[

(!φ)2 − (∇µ∇νφ)
2
]

,

L5 = G5(φ,X)Gµν∇µ∇νφ−
1

6
G5X(φ,X)

[

(!φ)3 − 3(!φ)(∇µ∇νφ)
2 + 2(∇µ∇νφ)

3
]

. (2)

Here we introduced the notation

! = gµν∇µ∇ν , (∇µ∇νφ)
2 = ∇µ∇νφ∇µ∇νφ ,

(∇µ∇νφ)
3 = ∇µ∇νφ∇ν∇λφ∇λ∇µφ , X = −

1

2
∇µφ∇µφ (3)

for the d’Alembert operator ! and derivatives of the scalar field, and indices are raised and lowered

with the metric gµν . The functions K,G3, G4, G5 are free functions of the scalar field φ and its

kinetic term X. Each choice of these functions determines a distinct gravity theory.

The gravitational field equations are derived from the action (1) by variation with respect to

the metric and the scalar field. It follows from the structure of the action that the field equations

take the general form

5
∑

i=2

Gi
µν =

1

2
Tµν ,

5
∑

i=2

∇µJ i
µ =

5
∑

i=2

P i
φ , (4)

where Tµν is the energy-momentum tensor of the matter fields χm. The terms Gi
µν , J

i
µ and P i

φ are

obtained from the variation of the different Lagrangians in the gravitational part of the action.

Their full form is rather lengthy and listed in the appendix of [18]. However, for practical purposes

it turns out to be easier to replace the metric field equation with its trace-reversed analogue

5
∑

i=2

Ri
µν =

1

2
T̄µν =

1

2

(

Tµν −
1

2
gµνT

)

, (5)

where the trace-reversed metric terms Ri
µν are given by

Ri
µν = Gi

µν −
1

2
gµνg

ρσGi
ρσ . (6)
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5
∑

i=2

Ri
µν =

1

2
T̄µν =

1

2

(

Tµν −
1

2
gµνT

)

, (5)

where the trace-reversed metric terms Ri
µν are given by

Ri
µν = Gi

µν −
1

2
gµνg

ρσGi
ρσ . (6)

Ostrogradsky stability
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mass and the test mass and take the form

γ(r) =
2ω + 3− e−mψr

2ω + 3 + e−mψr
, (2)

β(r) = 1 +
1

(2ω + 3 + e−mψr)2

{

ω + τ − 4ωσ

2ω + 3
e−2mψr

+a(r)

[

e−mψr ln(mψr)− (mψr + emψr) Ei(−2mψr)−
1

2
e−2mψr

]

+b(r)
[

emψrEi(−3mψr) − e−mψrEi(−mψr)
]

}

, (3)

where we used the abbreviations

a(r) = (2ω + 3)mψr , b(r) =
6µr + 3(3ω + τ + 6σ + 3)m2

ψr

2(2ω + 3)mψ
, (4)

and introduced the constants

mψ =

√

√

√

√

−2K(2,0)

K(0,1) − 2G3(1,0) + 3
G2

4(1,0)

G4(0,0)

, ω =
G4(0,0)

2G2
4(1,0)

(

K(0,1) − 2G3(1,0)

)

,

σ =
G4(0,0)G4(2,0)

G2
4(1,0)

, τ =
G2

4(0,0)

2G3
4(1,0)

(K(1,1) − 4G3(2,0)) , µ =
G2

4(0,0)K(3,0)

G3
4(1,0)

.

(5)

In the limit mψ → 0 of a massless scalar field we obtain the values

γ =
ω + 1

ω + 2
, β = 1 +

ω + τ − 4ωσ

4(ω + 2)2(2ω + 3)
, (6)

which are independent of the interaction distance r.
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テスト粒子と天体との距離に依存する
（CS修正重力でも同様、Smith et al 2008）



重力波を用いた検証

連星からの重力波振動数の進化

仮定：GR、インスパイラル期（PN的）、
スピン無し、(準)円軌道

+1PN +1.5PN2.5PN

+2PN

パラメタを入れる等

e.g.  Yunes&Pretorius 2009, Mishra et al 2010

５--BB　



結論

修正重力模型の多様化により
70年代の「PPN定式化」が改良

例）パラメタが増える、距離依存(PPN関数)へ

今後の課題（ひとつの例）

修正重力の幾つかの模型
（およびダークエネルギー候補）

通常の物質とは異なり、
「補助場」が天体の外部にも存在してよい

６　



漸近的平坦でない設定？

１）光の曲がり角の精密計算
例：Kottler時空（M, Λ）での論争

Islam,Lake, Rindler, Ishak, Sereno, Peacock, Arakida,Kasai, ...

２）重力波のエネルギー計算

例：BondiエネルギーやLandau-Lifshitz擬テンソル
の正当性は（ヌルの）無限遠方の平坦性を要する

（初期宇宙の背景重力波のエネルギー密度評価の危うさ？)
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