2015年秋季大会 合同シンポジウム「宇宙線起源の解明に向けた新展開」

超高エネルギー宇宙線観測による 宇宙線起源探査

大阪市立大学 大学院理学研究科 荻尾 彰一

最高エネルギー宇宙線は宇宙をほぼ直進する

最高エネルギー宇宙線の到来方向分布(TA, Auger)

到来方向分布の非一様性有意度(TA+Auger)

到来方向分布の非一様性有意度(TA+Auger)

「一次粒子」として宇宙線

エネルギースペクトルの南北(TA-Auger)比較

エネルギースケールの系統誤差の 範囲内だけれども (TA実験:21%、Auger実験:14%) TAとAugerのエネルギースペクトルは ー致していない

ankleの位置がそろうようにエネルギー をずらしても最高エネルギー端の形状 は一致しない

当面目指すべきことは

- エネルギー測定精度の向上
- エネルギースケールの統一
- 統計量(特にTA実験の)

15/09/28

天球上の領域ごとのエネルギースペクトル

GRB起源のUHECR Miralda-Escude & Waxmax, ApJL, 362, L59(1996)
偏向角
$$\vartheta_s \approx 0^\circ .05 \left(\frac{D}{\lambda}\right)^{\frac{1}{2}} \left(\frac{\lambda}{10 \text{ Mpc}}\right) \left(\frac{B}{10^{-11}\text{ G}}\right) \left(\frac{E}{10^{20}\text{ eV}}\right)^{-1}$$

到来時間の遅れ $\tau(E) \approx 10^3 \text{ yr} \left(\frac{D}{100 \text{ Mpc}}\right)^2 \left(\frac{\lambda}{10 \text{ Mpc}}\right) \left(\frac{B}{10^{-11}\text{ G}}\right)^2 \left(\frac{E}{10^{20}\text{ eV}}\right)^{-2}$

Jaron provide the second second

銀河系外陽子起源モデルとスペクトルの比較

到来方向分布一様性からソース密度推定

E. Kido(TA実験)

(実データ) TA-SDによる 72イベント(E> 57EeV, 天頂角 < 55°, ゆるいカット) 半径5°以内のペア数 = 10

(シミュレーション)

ー様源分布(源密度はパラメーター) 一次陽子

smearing angle=5°(銀河系外)

TA-SD exposure

→ 57 EeV以上を72イベント →5°以内のペア数を計算(107回繰り返す)

比較

P-value: <0.000001 for 10⁻⁶ Mpc⁻³ P-value: 0.0061 for 10⁻⁵ Mpc⁻³ P-value: 0.36 for 10⁻⁴ Mpc⁻³

Object	Density (Mpc ⁻³)
Bright galaxy	$1.3 imes 10^{-2}$
Seyfert galaxy	$1.25 imes10^{-3}$
Bright quasar	$1.4 imes10^{-6}$
Fanaroff–Reily 1	$8 imes 10^{-5}$
Fanaroff–Reily 2	$3 imes 10^{-8}$
BL Lac objects	$3 imes 10^{-7}$

IceCubelt

AGNはUHECR源ではない。

とのステートメント

もし源ならばvが見えるはず

当面目指すべきことは

統計量、シミュレーションの精度向上

2015合同シンポジウム

Takami & Sato, ApP, 30, 306(2009)

Augerによる<Xmax>との_{Xmax}:化学組成

10^{18.5}eV付近:エネルギー増加とともに 陽子からより重い原子核へ

16

GRBモデル(Globus, Allard, Mochkovitch, Parizot)

arxiv:1409.1271, arXiv:1505.01377

15/09/28

"Global Fitモデル + EXTRA proton" S. Tilav, UHECR2014

宇宙線源に迫るための UHE宇宙線の観測的研究

- ・ 天球上の領域ごとのエネルギースペクトル (南天↔北天、超銀河面、AGN近傍、Hotspot、…) コイツの何がわかるか...
- エネルギースペクトルの形状

- ・ エネルギースペクトルの電子対生成dip+GZK cutoffモデルとの比較
- イベント到来方向分布の一様性からのソース密度推定
- UHE領域の化学組成からのGRBモデル?、Global fit + EXTRA proton?

UHE宇宙線源解明への取り組み(1)

UHE宇宙線源解明への取り組み(2)

銀河系内起源と銀河系外起源の境界はどこに?

knee以下から最高エネルギー端まで ICRC2015, V. Verzi 10^{17} knee $\mathrm{Sr}^{-1}\,\mathrm{eV}^{1.5}$ The Astroparticle Physics Conference 34th International Cosmic Ray Conference July 30 - August 6, 2015 2nd knee The Hague, The Netherlands 10¹⁶ S⁻¹ $E^{2.5}$ [m⁻² 銀河系内起源は単一機構か? 10 (これほど広いエネルギー範囲を1つ Cut-off (1種類)の天体でカバーしているのか?) × 10^{14} Yakutsk #252 (E) KASCADE comb. #263 KASCADE-Grande EposLHC #359 10¹³ **KASCADE-Grande QGS2v4 #359** TA #349 Auger #271 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10^{18} 10^{20} 10¹⁴ 10^{16} 10^{15} 10^{17} 10^{19} 10^{21} E [eV] 5

ankle(~10¹⁸eV)に系内/系外遷移がある場合... 最低でも2種類の異なる起源が必要

ankle(~10¹⁸eV)に系内/系外遷移がある場合… 最低でも2種類の異なる起源が必要

26

knee領域以上の化学組成

15/09/28

knee領域以上の化学組成:測定結果とモデル計算

異方性振幅

A. M. Hillas, Annual Review of Nuclear and Particle Science, <u>34</u>(1984) T. K. Gaisser, "Cosmic Rays and Particle Physics"

宇宙線の到来方向異方性

15/09/28

異方性振幅 δÓ ANISOTROPY AMPLITUDE (%) - Yakutsk z- Kamiokange - E- Haverah Park -O- EAS-TOP -A Buckland Park (1983) Grande, East-West 95% ¥

まとめ:宇宙線観測による宇宙線起源の解明に向けて

最高エネルギー領域

- Hot spot(北天)?、Warm spot(南天)? ← 起源が見つかりつつあるのか?
- 天球上の領域ごとのエネルギースペクトル
- (南天↔北天、超銀河面、AGN近傍、Hotspot、…)
- エネルギースペクトルの形状
- エネルギースペクトルの電子対生成dip+GZK cutoffモデルとの比較
- 到来方向分布一様性からソース密度を推定
- 化学組成からのGRBモデル?、Global fit + EXTRA proton?

