超新星爆発による 重力波、電磁波、ニュートリノ放出

Kei Kotake

(Fukuoka University/NAOJ) with <u>Ko Nakamura (Waseda U), Tomoya Takiwaki (NAOJ),</u> <u>Takami Kuroda (U. Basel), Yudai Suwa (Kyoto U.)</u> <u>Kazuhiro Hayama (Osaka-city U.), Wakana Iwakami (Waseda U.)</u> <u>Shio Kawagoe (U. Tokyo), Tomohide Wada (NAOJ),</u> <u>Yohei Masada (Kobe U.), S. Horiuchi (UC. Arvine)</u> <u>Yu Yamamoto (Waseda U.) and M. Tanaka (NAOJ)</u>

> 日本物理学会2014春季大会 重力波源とその電磁波、ニュートリノ対応天体。

LETTER

February 19, 2014

doi:10.1038/nature12997

Asymmetries in core-collapse supernovae from maps of radioactive ⁴⁴Ti in Cassiopeia A

B. W. Grefenstette¹, F. A. Harrison¹, S. E. Boggs², S. P. Reynolds³, C. L. Fryer⁴, K. K. Madsen¹, D. R. Wik⁵, A. Zoglauer², C. I. Ellinger⁶, D. M. Alexander⁷, H. An⁸, D. Barret^{9,10}, F. E. Christensen¹¹, W. W. Craig^{2,12}, K. Forster¹, P. Giommi¹³, C. J. Hailey¹⁴, A. Hornstrup¹¹, V. M. Kaspi⁸, T. Kitaguchi¹⁵, J. E. Koglin¹⁶, P. H. Mao¹, H. Miyasaka¹, K. Mori¹⁴, M. Perri^{13,17}, M. J. Pivovaroff¹², S. Puccetti^{13,17}, V. Rana¹, D. Stern¹⁸, N. J. Westergaard¹¹ & W. W. Zhang⁵

Progression of a Supernova Explosion

http://www.nasa.gov/jpl/nustar/supernova-explosion-20140219/

~350 years Type IIh

Goals : Origin of explosion asymmetry : Origin of heavy elements

LETTER

February 19, 2014

doi:10.1038/nature12997

DeLaney et al. (2010)

Goals : Origin of explosion asymmetry : Origin of heavy elements

Explosion Mechanism

Status of Neutrino-Radiation Hydrodynamics Supernova Simulations

Progenitor	Group Mechanism (Year)		Dim. (Hydro)	t_{exp} (ms)	$E_{exp}(B)$ $@t_{\rightarrow}$ (ms)	ν transport (Dim $O(v/c)$)		
8.8 M_{\odot}	MPA (2006,201:)	ν -driven	1D(2D (PN)	~200	0.1 (~800)	Boltzmann 2, $O(v/c)$		
(NH88)	Princeton - (2006)	ν -driven	2D (N)	$\lesssim 125$	0.1	MGFLD 1, (N)		
$10 M_{\odot}$ (WHW02)	Basel (2009)	ν +(QCD transition)	1D (GR)	255	0.44 (350)	Boltzmann 2, (GR)		
11 M _☉ (WW95)	Princeton+ (2006)	Acoustic	2D (N)	$\gtrsim 550$	$\sim 0.1^{*}$ (1000)	MGFLD 1, (N)		
11.2 M_{\odot}	MPA (2006,2012)	ν -driven	2D I N, <i>C-G</i>	~ 100 R) ~ 200	$\begin{array}{c} \sim 0.005, \theta. \theta 25 \\ \sim 200, 90\theta \end{array}$	"RBR" Boltz- mann, 2, $O(v/c)$		
(WHW02)	Princeton+ (2007)	Acoustic	2D (N)	≳1100	$\sim 0.1^{*}$ (1000)	MGFLD 1, (N)		
	Tokyo+ (2011)	ν -driven	3D (N)	~ 100	0.01 (300)	IDSA 1, (N)		
12 M_{\odot} (WH07)	Oak Ridge+ (2009)	ν -driven	2D (PN)	~300	0.3 (1000)	"RBR" MGFLD 1, $O(v/c)$		
13 M _☉ (WHW02)	Princeton+ (WH97)	Acoustic	2D (N)	≳1100	$\sim 0.3^{*}$ (1400)	MGFLD 1, (N)		
(NH88)	Tokyo+ (2010)	ν -driven	2D (N)	~ 200	0.1 (500)	IDSA 1, (N)		
$15 M_{\odot}$ (WW95)	MPA (2009,201:)	ν -driven	2D F N, <i>C-G</i> /	~ 600) ~ 400	0.025,0.125 (~700,800)	Boltzmann 2,O(v/c)		
(WHW02)	Princeton+ (2007)	Acoustic	2D (N)	-	- (-)	MGFLD 1, (N)		
(WH07)	OakRidge (2009)	ν -driven	2D (PN)	~300	~ 0.3 (600)	"RBR" MGFLD 1,O(v/c)		
$20 M_{\odot}$ (WHW02)	Princeton + (WH07)	Acoustic	2D (N)	≳1200	$\sim 0.7^{*}$ (1400)	MGFLD 1, (N)		
25 M_{\odot} (WH07)	Princeton+ (2007)	Acoustic	2D (N)	≳1200	(-)	MGFLD 1, (N)		
	Oak Ridge (WH07)	ν -driven	2D (PN)	~300	~ 0.7 (1200)	"RBR" MGFLD 1, $O(v/c)$		

(e.g., Kotake et al. (2012) PTEP)

Big breakthrough:
✓ Wilson (1985)以来20年ぶりの爆発 (publishされた結果で)
✓ Success for 8.8 to 27 M_{sun} stars in 2D self- consistent simulations !
✓ Similar trends between Garching and our team. (Hanke et al., Suwa et al. (2013) Nakamura et al. (2014))

"2DでProgenitor hunting!"

成功例:15モデル ✓残りの親星は?

✔ 研究潮流

Color for entropy

союг юг енстору					T _{pb} = Oms			Nakamura et al. in prep								
500km	s10.8	500km	s11.0	500km	s11.2	500km	s11.4	500km	s11.6	500km	s11.8	500km	s12.0	500km	s12.2	
500km	s12.4	500km	s12.6	500km	s12.8	500km	s13.0	500km	s13.2	500km	s13.4	500km	s13.6	500km	s13.8	
<u>500km</u>	s14.0	500km	s14.2	<u>500km</u>	s14.4	500km	s14.6	<u>500km</u>	s14.8	500km	s15.0	500km	s15.2	500km	s15.4	
500km	s15.6	500km	s15.8	<u>500km</u>	s16.0	500km	s17.0	500km	s18.0	500km	s19.0	500km	s20.0	500km	s21.0	
500km	s22.0	500km	s23.0	500km	s24.0	500km	s25.0	500km	s26.0	500km	s27.0	500km	s28.0	500km	s29.0	
500km	s30.0	500km	s31.0	500km	s32.0	500km	s34.0	500km	s36.0	500km	s38.0	500km	s40.0	500km	s75.0	
5			1	0			1	5			2	0			2	5

Compact parameter

爆発しやすさの指標は何か!?

Compact parameter

Nakamura et al. in prep, Hanke et al. in prep

Compact parameter

超新星メカニズム研究(ここまで): Short summary

✓ No surprise from 2D exploding models ! (Detailed comparison will come soon.)

Core-Compactness is a key to multi-D explosion systematics

"Long-term" evolution : Needed to determine "final" E_{exp} (increasing),

final M_{rem} (NS or BH), v_{kick} , M_{Ni} , L_v , h_{GW} etc.

Compact parameter

Neutrino signals from ab-initio 3D models :11.2 M_{sun} (1/2)

(Kawagoe, Takiwaki, KK in prep based on Takiwaki et al. (2012 ApJ))
Inverted mass-hierarchy (self-interaction: single-angle approx.)

Typical horizon extends (at least) out to LMC.

<u>Neutrino signals from ab-initio 3D models : 27 M_{sun} (2/2)</u>

Tamborra et al. (2013), PRL

Nakamura et al. in prep

Neutrino Signals from Multiple 2D models

Nakamura et al. in prep

models

Neutrino Signals from Multiple 2D models

Basics are covered, now improvements

Next generation, e.g., Hyper-K Near future, i.e., SuperK with Gadolinium

Diffuse supernova neutrino background (背景ニュートリノ)

Gravitational waveform from a self-consistent 3D model

Takiwaki & KK in prep.

GW spectrogram

Summary on GWs from CCSN:

- ✓ Waveforms have no template features :stochastic explosion process
- ✓ <u>Three generic GW features</u> in neutrino-driven explosion models:
- **1.Prompt-convection phase**

2.Non-linear phase (SASI, Convection)

3. Explosion phase

- : within ~20 ms post-bounce
- : Plumes hit the PNS surface (< ~1 s)
- : shock launched (> ~0.6 s(?))

(e.g., Ott (2009), Kotake (2013) for reviews)

"General Relativity (GR) important !

3D full GR simulations with 3 flavor gray neutrino transport

✓ "Excess power" blue-shifts with time ⇒ Traces the activity of SN engine ! (see, e.g., 2D: Murphy+(09), B.Mueller+(13), Yakunin+(09), e.g., Kotake (2013) for review)

Identifying SN mechanisms from Coherent Network Analysis

Hayama, Kuroda, Takiwaki & KK (2014a,b) in prep

✓ LIGOx2, VIGRO, KAGRA

✓ Method robust for v-driven mechanism out to a few kpc (better for high compact).
 ✓ Can identify for MHD mechanism out to LMC (50kpc).

Comparison between MHD vs. v-driven mechanism

Spectrogram between neutrino-driven vs. MHD-driven mechanism : different !

Kuroda et al. in prep

Comparison between MHD vs. v-driven mechanism

Spectrogram between neutrino-driven vs. MHD-driven mechanism : different !

Origin of Kick: Wongwathanarat et al. (2010, 2013) A&A ApJL

Mixing instabilities in 3D for light-curve modeling: Wongwathanarat et al. in prep.

Mixing Instabilities in 3D SN Models

(Utrobin, Wongwathanarat, Janka, Müller, in preparation)

150

E (10⁵¹ erg)

1.68

1.01

2.62

1.16

Nomoto

Woosley

Woosley

Woosley

H.T. Janka

Summary

\star Explosion mechanisms:

- Compactness" is a key to characterize diversity of neutrino-driven models.
- Lots of exploding models reported in 2D.
 First example of 3D models trending towards explosions

"<u>3D modeling" has just begun</u>.

\Rightarrow GW & neutrino signals:

- ✓ change stochastically with time:
- ✓ **Spectrograms** imprint SN post-bounce activity.
- Coherent Network analysis, Multi-variant method proposed: robust for neutrino mechanism out to 10 kpc, and for MHD mechanism out to LMC (model-dependent).

\Rightarrow Electromagnetic-wave signals:

kick, explosive nucleosyntheis, light-curve modeling from
 <u>self-consistent model</u> just started.

Many thanks !

<u>Multi-messengers signatures being unveiled from first-principle 3D models:</u> <u>Coincident analysis should be important</u>!