

村瀬 孔大 Institute for Advanced Study

日本物理学会 3月 2014

Toward GW Astrophysics

Promising: GWs have been indirectly detected so they should exist

Outline

The next decade will be the multimessenger era X/γ rays have provided powerful messengers

X-Ray and Gamma-Ray Detectors (Partial)

Monitor ←

Energy: 0.02-300 GeV FOV: ~2.4 sr Localization: <1 deg

Energy: 8 keV-30 MeV FOV: ~4π sr Localization: <5-15 deg

Energy: 0.2-10 keV FOV: 23.6x23.6 arcmin Ang. Res. ~20 arcsec Follow-up: <100 s

Energy: 6-80 keV FOV: 12x12 arcmin Ang. res. ~45 arcsec Follow-up: <24 hr

Energy range: >EeV FOV: ~2π sr Ang. res. ~1 deg Duty cycle: ~100%

Energy range: 0.1-100 TeV FOV: $\sim 2\pi$ sr Ang. res.: $\sim 0.3-0.7$ deg Duty cycle: $\sim 95\%$

Energy range: ~10 GeV-100 TeV FOV: ~20 deg² Ang. res.: ~0.05 deg Duty cycle: ~10%

Gamma-Ray Detectors: Sensitivity Comparison

cf. Swift/BAT: ~2x10⁻⁹ erg cm⁻² s⁻¹, Swift/XRT: ~2x10⁻¹⁴ erg cm⁻² s⁻¹ (10⁴ s), WF-MAXI: 10⁻⁹ erg cm⁻² s⁻¹, NuSTAR: 10⁻¹⁴ erg cm⁻² s⁻¹ (10⁶ s)

Strategy & Outline

- **GW+EM** many motivations:
- distance determination, host galaxy & source environments, explosion mechanism, outflow (jet) physics, nucleosynthesis
- Localization by GW detectors ~ a few degrees²
- wide-field monitor (ideal for bright transients: ex. GRBs) GW & X/γ rays: coincident detection
- detailed follow-ups (necessary for faint transients) GW $\rightarrow X/\gamma$ rays or GW \rightarrow better local. w. optical/X $\rightarrow X/\gamma$ rays

cf. γ-ray detection by Fermi/Swift → CTA search ~1-2 long GRBs yr⁻¹ (Kakuwa, KM+ 12 MNRAS)

Short GRBs: Questions and Motivations

- $E_{iso} \sim 10^{49} 10^{51} \text{ erg} << 10^{52-54} \text{ erg for long GRBs}$
- Various hosts including elliptical galaxies
- Leading candidates: NS-NS (or BH-NS) mergers

But some short GRBs show extended emission Concerns about contamination by long GRBs

Short GRBs: Emission from Relativistic Jets

Testing the meger paradigm for short GRBs

obs. rate ~10 Gpc⁻³ yr⁻¹ (~0.2 yr⁻¹ within 200 Mpc) true rate: ~1000 Gpc⁻³ yr⁻¹ (θ /10 deg)⁻²

Isotropic Mass Ejection: Merger Remnant

 $E_{kin} \sim 10^{-2} M_{sun} (0.1c)^2 \sim 10^{51} \text{ erg} << E_{GW}$ Detectable w. detailed X-ray follow-ups

DNS Mergers: Other Possibilities

Relativistic shock breakout

radiative acceleration of hot regions

Precursor

extraction via B field interactions

L_{EM}~10⁴⁰⁻⁴³ erg/s (B/10¹¹ G)²?

Long GRBs: Questions and Motivations

BH+disk or Pulsar?

WR star, Blue supergiant BH/NS-He binary?

- emission mechanisms?

External shock

- jet composition?
 (magnetic, baryonic)
- origins of flares/plateau?

GWs can probe engines invisible by photons

Contd.

GWs from typical CCSNe: E_{GW}~10⁻⁹-10⁻⁸ M_{sun} c² (Kotake-san) Various stronger possibilities are suggested (but uncertain)

Diversity of GRBs

GRB-SN Connection

Margutti+ 14

Challenging But Not Bad

High-Energy Counterpart: Shock Breakout

~10% of CCSNe Have Dense Circumstellar Material

Interesting Case: Newborn Pulsar Scenario

•Possible origin of luminous SNe •Maybe origin of LL GRBs/GRBs

GW scenarios (uncertain) ex1. mag. deform.: $\epsilon_B = \Delta I/I \sim -10^{-3.5} (B_t/10^{16} \text{ G})^2 \rightarrow D < 20 \text{ Mpc}$ ex2. dyn./sec. instabilities $\rightarrow D < 20-100 \text{ Mpc}$?

ex. Cutler 02, Stella+ 05, Corsi & Meszaros 09, Passamonti+ 13

Newborn Pulsar Scenario: Contd.

(Luminous) Supernovae

GRBs/Jet-driven Supernovae

Collimated PNS wind

Near-spherical PNS wind

Application to Supernovae

$$\frac{dE}{dT} = -\frac{B_p^2 R^6 \Omega_{eff}^4}{6c^3} - \frac{32GI^2 \epsilon^2 \Omega^6}{5c^5} = L_{dip} + L_{GW} \quad \frac{1}{t} \frac{\partial}{\partial t} [E_{\rm int}t] = \eta_{\gamma} L_{\rm p}(t) - L_{\rm rad}(t)$$

Kashiyama, KM+ in prep, KM, Kashiyama+ in prep.

Contd.

9

Further Application: GRB Shallow-Decay

Implications

- GWs: detectable for P₀<3-4 ms, B_p<10¹⁴ G, B_t>10¹⁶ G for Virgo, SNe are dim so X/γ rays are relevant
- MeV, GeV, EeV vs & UHE γs might also be detected
- Successful GW & EM detections allow us to determine P_0 , B_t , $B_p \rightarrow$ link between engines & emission
- Even only EM give clues to theoretical issues: σ problem - what happens in the early phase? roles of Rayleigh-Taylor instabilities etc.
- Origin of magnetic fields: dynamo vs fossil
 - Galactic magnetars are associated with non-HNRs.
 - SLSNe-Ic and GRBs are very rare GWs may help the dynamo scenario to be consistent

Summary

X/y rays are powerful

- NS-NS, NS-BH: promising multimessenger sources
 GW+EM → addressing short GRB origins
 - detailed X-ray follow-ups \rightarrow remnant, precursor
- Long GRBs and related supernovae: potentially interesting GW sources and promising X/γ-ray counterparts
 - LL GRBs and peculiar SNe may be relevant
 - important not to miss nearby SNe (cf. v)
 - shock breakout
 - example: newborn fast-rotating pulsars