平成25年度

CRC将来計画タウンミーティング

-趣旨説明-

CRC実行委員長 神田展行 (大阪市立大学)

日時:2014年3月14日(金)

場所:東京大学柏図書館

メディアホール (柏キャンパス)

過去のCRCタウンミーティング

2011/6/20 日本学術会議 天文学・宇宙物理学分科会から天文学・宇宙物理学において『コミュニティとしてぜひ進めたい優れた中規模計画』の推薦依頼

- * 2011/7/30 第1回タウンミーティング(8つの中規模計画)
- * 2012/1/22 第2回タウンミーティング (ガンマ線天文分野)
- * 2012/6/30 第3回タウンミーティング(超高エネルギー宇宙線観測分野)
- * 2012/7/22 第4回タウンミーティング(地下非加速器実験分野)
- * 2012/11/24-25 CRCシンポジウム(拡大タウンミーティング)開催 2013/9 2011-12期将来計画検討小委員会の最終報告文書

タウンミーティング:(1)将来計画の検討としての側面

- * 「中規模計画」を中心に検討を進めてきた。
 - ―>学術会議天文学・宇宙物理学分科会への回答
- * 将来計画について、<u>コミュニティでの継続的な議論</u>すること、一種の<u>ピ</u> アレビューとして機能していることは評価された。
- * 大規模計画は? (現在進行中も含む)
- * 小規模計画は?
- * この2年で新しく考えられた計画、これからの計画は?
- * そのほか中規模計画の検討で漏れていたもの
 - ―>今回(以降)のタウンミーティング

> お問い合せ・ご意見 → サイトマップ → English

> HOME > 日本学術会議とは > 提言・報告等 > 一般公開イベント > 委員会の活動 > 地区会議の活動 > 国際活動 > 会員・連携会員等 > 協力学術研究団体

会長からのメッセージ

The message from President

副会長室

各部の審議活動

今後の委員会開催案内

サイエンスカフェ

今後の国際会議開催予定

アジア学術会議SCA

持続可能な社会に関する

東日本大震災への対応について

日本学術会議では、平成23年3月11日の東日本大震災発生後、東日本大震災対策委員会 を設置し、9月までの間、提言、報告等を取りまとめました。

平成23年10月以降は、東日本大震災復興支援委員会及び東日本大震災に係る学術調査 検討委員会を設置し、審議、調査、提言等の活動を行っています。

トップ・ニュース

提言「第22期学術の大型研究計画に関するマスタープラン(マスタープラン2014)」 を公表いたしました。 (平成26年3月12日) NEW!

- 本文はこちら PDF
- → 付属資料 (区分1 計画番号51~100) □ PDF
- → 付属資料 (区分1 計画番号101~150) □ PDF
- ▶ 付属資料 (区分2) № PDF

> 日本学術会議憲章

> 科学者の行動規範

年次報告

提言・報告等

9、年で探す

Q期で探す

答申

回答

勧告

http://www.scj.go.jp

参考:学術会議

「マスタープラン2014」

【区分I】

,	計画番号	学術 領域 番号	計画名称	計画の概要	学術的な意義	社会的価値	計画期間	所要経費 (億円)	主な実施機関と 実行組織
					ನ್ನ			建設費要)	
	83		暗黒物質の直接探索(XMASS) Direct search for dark matter (XMASS)	の暗黒物質である。本計画は、 世界最大(1トン)でかつもっとも 低いエネルギーまで観測可能 な、液体キセノン実験装置により、多様な暗黒物質の直接検出 を目指す。	され、新たな素粒子であると考えられている。暗黒物質が直接観測されれば、新しい素粒子の発見にも繋がり、宇宙と素粒子の考え方に大きなインパクトを与える。	とは、人類の宇宙観、人生観、 社会のあり方、考え方に大きな 影響を与える。	H26-H27:第I期装 置建設 H28-H30:装置の 運転	I 期計画装置13.6	東京大学国際高等研究所 ブリ数物連携宇宙研究機 (IPMU)と東京大学宇宙線 究所を中心に名古屋大、 戸大など、国内8機関と韓 の2機関が実施機関である。
١				理化学研究所RIピートファクト	「安定の島」け自然異で創られた	核変換・核合成の基盤をさい	超伝道線形加速	经額190(初期投資)	宝饰機關·独立行政法人
	85	23-2	大型先端検出器による核子崩壊・ ニュートリノ振動実験 Nucleon decay and neutrino oscillation experiment with a	スーパーカミオカンデに代わる 100万トン級水チェレンコフ検出 器ハイパーカミオカンデを建設 し、J-PARC加速器ニュートリノ ビームと組み合わせる事により、 世界最先端の核子崩壊・ニュー トリノ研究を行う。	(粒子・反粒子対称性)の破れを 探索し、ニュートリノに満ちた宇 宙の進化論に対する理解を深め る。さらに核子崩壊探索と合わ	化の謎に迫ることにより、人類の 知的好奇心に訴える問題に挑戦 する。また我が国が主導してき たニュートリノ研究の飛躍的発	パーカミオカンデ 地質調査及び建 設、運転 H35-H50:	デ:建設費800、運転 経費等30/年(15年間) OJ-PARC:運転経費	エネルギー加速器研究を が中心となり推進し、国 の大学・研究機関の参 予定。
	88	23-2	極低放射能環境でのニュートリノ 研究 Neutrino research at the ultra- low radioactivity environment	し、宇宙素粒子の大問題解明に むけたニュートリノのマヨラナ性 検証や第四世代の探索、暗黒物 質の季節変動検証、ニュートリノ 地球科学の推進など多様な極	ニュートリノ研究の最重要課題 であり、地球ニュートリノ観測は 地球科学に全く新しい情報をも たらす学際的研究である。その	知的好奇心をかき立てる基本的な謎への挑戦は、理科離れ対策の一助となる。また、世界をリードする最先端の環境は、教育・人材育成への高い効果が期待できる。さらに、極低放射能技術は除染等への応用も可能である。	KamLAND 改造お よび施設整備 H27-H33:観測	化14、汎用化1、極低 放射能環境の増強4、	東北大学ニュートリノ科学 究センター、他国内2機 海外13機関のKamLAN KamLAND-Zen、CeLAN KamLAND-PICO共同研究 ループ
-					.	l			
	90	23-3	CTA 国際宇宙ガンマ線天文台 CTA international cosmic gamma ray observatory		し、宇宙の構成物質、時空間の 量子的振る舞いを高い精度で研 究する。CTA の科学は宇宙物 理、宇宙論から基礎物理にわた り、その科学的意義は極めて高	イナミックで、極限的な宇宙の姿 を明らかにし、人類に新たな知 見を与える。また、最先端の光 学、エレクトロニクス技術を利用 し、その開発を通して、産業界に	フ望遠鏡 H27-H31:施設整 備 H29-H31:部分運	望遠鏡装置:設備投資42、維持運転実験 経費4/年(20年間)	線研究所を中心とする2
	91	23-3	JEM-EUSO: 国際子田ステーション日本実験棟に設置する極限エネルギー宇宙天文台 JEM-EUSO: Extreme universe	口径約2.5mの広視野(60度)望 遠鏡を国際宇宙ステーション日 本実験棟に搭載し、直径約 400km以上にわたる地球大気に おける宇宙線空気シャワーを検	宇宙における最高のエネルギーをもった粒子の源を探査し、宇宙における基本的相互作用の限界を観測する。最高エネルギー粒子は、ほぼ真直ぐに地球に到達するため、その到来方向から起	高透明度・軽量・大型フレネルレンズの製造技術は太陽エネルギー、リモートセンシング、超高速撮像への応用が期待されてい	H26-H29:望遠鏡 製作、打ち上げ H29-H34:観測	分約60) 光学系10、光電子増 倍管5、大気モニタ用 レーザー2、望遠鏡の 組立・試験10、他	理化学研究所、東大宇 研究所、甲南大学、埼 学、大阪市立大学、東 業大学、モスクワ国立 (ロシア)、イタリア国立は 理学研究所、NASA、JAX ROSCOSMOSなど

タウンミーティング: (2) CRCのサイエンスを考える場として

- * 分野として目指すサイエンスは? 宇宙線は多岐にわたる代償として、ややわかりにくい (と言われる)
- * ロードマップ

今までと将来、計画とサイエンス、といった対応が 見えるのが大事。

CRCの将来の方向性を明らかにする

2013-14年度期 CRC将来計画検討小委員会

- * 西嶋恭司(東海大、委員長)
- * 田島宏康(名大)
- * さこ隆志 (名大)
- ❖ 中畑雅行 (ICRR)
- ❖ 荻尾彰一(大阪市大)
- * 中家剛(京大)
- * 片岡淳 (早大)
- ◈ 梶田隆章 (ICRR所長)
- * 山崎了(青山大)
- ❖ 川崎雅裕 (ICRR)

本日プログラム

よろしくお願いします!

*今回も宇宙線研共同利用研究 から旅費補助いただきました。 関係各位に感謝します。

平成25年度CRC将来計画タウンミーティング プログ

時刻	タイトル	登壇者							
10:30 - 10:35	趣旨説明	神田展行(大阪市大)							
10:35 - 11:00	NEWAGE	身内賢太郎(神戸大)							
11:00 - 11:25	LHCfZ	さこ隆志(名古屋大)							
11:25 - 11:50	GRAINE	青木茂樹(神戸大)							
11:50 - 12:15	TAx4	佐川宏行(ICRR)							
12:15 - 12:40	DPF	安東正樹(東京大学)							
(昼食)									
13:30 - 14:15	HyperK (science)	塩澤真人(ICRR)							
14:15 - 15:00	HyperK (technical)	田中秀和(ICRR)							
	(休憩)								
15:15 - 16:00	KAGRA (science)	田越秀行(大阪大学)							
16:00 - 16:45	KAGRA (technical)	麻生洋一(東京大学)							
16:45 - 17:30	議論								
17:20 終了									

§
)