KamLAND2-Zen

Zen = \underline{Ze} ro <u>n</u>eutrino double beta decay experiment

CRC将来計画タウンミーティング 第4回 ~地下非加速器実験分野~ 2012年7月22日

関係しているかもしれない。

質量を持つニュートリノにはカイラルパートナーが存在する。

マヨラナニュートリノの特徴

- レプトン数と"B-L"を破る←スファレロン過程を生き残るのに必要
- ●重いニュートリノ(大統一スケール近く)を自然に導入できる

シーソー機構で"有限だが軽いニュートリノ質量"を説明できる。 $L_{\text{mass}} = -\frac{1}{2} \begin{pmatrix} \overline{(\nu_L)^c} & \overline{N_R} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ (N_R)^c \end{pmatrix} \rightarrow m \sim \frac{m_D^2}{M_R}$

 重いニュートリノのCPを破る崩壊で"宇宙物質優勢"を説明できる。 (レプトジェネシス理論) Straight forward method to verify Majorana nature

数十の原子核が二重β崩壊する。

2つのニュートリノが、フェムトメート ルの空間に作られ反応が増幅される。

1930 light neutral particle (W.Pauli)
1933 neutrino, beta decay theory (E.Fermi)
1935 double beta decay (M.Goeppert-Mayer)
1937 Majorana neutrino (E.Majorana)
1939 neutrino-less double beta decay (W.Farry)

KamLAND-Zen が挑む宇宙・素粒子の大きな謎 ●ニュートリノのマヨラナ性 未知の重いニュートリノ $\nu = \nu$ ニュートリノが軽い謎を究明 を自然に導入できる。 ●レプトン数の破れ スファレロン過程を生き残 宇宙物質優勢の謎を究明 & (B-L)の破れ る。 mass structure ニュートリノ質量構造 ●ニュートリノ質量絶対値 → degenerated normal inverted 究明で最重要 マヨラナ質量機構を仮定 Δm^2 背景となる物理を特定するには、角分 布やエネルギーの分配測定、多核種で δm^2 の測定が必要 particle mass big bang .000.000.001 .000.000.000 なぜニュートリノ b d⊷ s⊷ なぜ反物質が無く物質が antineutrinos are extraordinary light particle は軽い? particle $(\nu_3) < \nu_1 < \nu_2 < (\nu_3)$ 生き残った? e (シーソー機構) now (レプトジェネシス理論) ΤeV 7 В Ð ke∨ Me∨ Q matter Ð < Φ Φ 大統一理論? < light

ニュートリノを伴う二重β崩壊と伴わない二重β崩壊

KamLAND-Zen

~320kg 90% 同位体濃縮 ¹³⁶Xe を導入 将来800kg~1000kgに拡張

KamLANDを使うメリット

- 稼働中の装置
 - → 相対的に低コストで迅速に開始可能
- 巨大かつ清浄 (1200m³, U: 3.5x10⁻¹⁸g/g, Th: 5.2x10⁻¹⁷)
 - → 外部の放射線が問題にならない (Xe とミニバルーンには高清浄が必要)
- (必要時は低コストで) Xe含有液体シンチレータの純化、 ミニバルーンの換装が可能
 - → 拡大も容易 (数トンのXeにも対応可能)
- β,γを漏らさず観測
 - → バックグラウンド識別が相対的に容易
- 反ニュートリノ観測を並行できる
 → 原子炉停止時の良質の地球ニュートリノデータ

KamLAND-Zenの目標設定

検出器構成	Xe量	開始可能時期	到達予定感度	KKDC クレイム	縮退 構造	柳田 予測	SKデータ 逆階層構造	標準階層構造	暗黒物質 第4世代ニュートリノ
KamLAND-Zen	320kg	進行中	80meV (2年)	Ô	\bigcirc	×	×	×	\bigtriangleup
KamLAND-Zen	700~800kg	2013~	40meV (5年)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	×	\bigtriangleup
KamLAND2-Zen	1000kg	2014, 2016~	20meV (5年)	Ô	\bigcirc	Ô	\bigcirc	△要新技術	\bigcirc

mini balloon fabrication

produced in a class 1 super-clean-room (class 1 = less than $1 \ 0.5 - micron - particle$ in cubic feet)

 \rightarrow 25 µm Nylon6 less material transparency 99.4% @400nm strength 19.4 N/cm Xe barrier < 220 g/year

low radioactivity \rightarrow specially made no filler film : 150 \rightarrow 2x10⁻¹²g/g U Th : 59 \rightarrow 3x10⁻¹²g/g ${}^{40}\text{K}$: 140 \rightarrow 2x10⁻¹²g/g

gores from the film

developed heat welding

All tools and parts to be used for the installation have been cleaned here.

film part(~6m)

corrugated tube(7

テフロン用 (ミー5、2001

6X7000 >3&Y-11

cone

3.16m

24 aores

Installation in a class 10~100 clean room built at the top of KamLAND

balloon and corrugated tube deployment

balloon went through the black sheet

mini-balloon surface

welding lines

supply tube

mini-balloon inflated with dummy LS and then replaced with Xe-loaded LS density tuning finished and tubes to be extracted

Normal data taking has been started on September 24th, 2011. only two years from the first budgets in FY2009

Energy Calibration

Data from the initial 3month

2011 10/12~2012 1/2 total livetime 77.6 days 27.4kg-yr exposure of ¹³⁶Xe

peak at $0V2\beta$ (Q=2.458MeV) !!!?

15

Measurement of the $2v2\beta$ half life

Background situation

Peak fit with 0v signal

Peak position is different from that of expected 0V. 0V only is rejected at more than 8σ level.

17

放射性不純物

2つの可能性:

- ・
 <u>放射性不純物</u>なら長寿命なはず。
- <u>宇宙線による原子核破砕</u>ならミューオンとの相関がみえるはず。

thousands of millions of BNSDFの全原子核の崩壊を調査。

http://ie.lbl.gov/databases/ensdfserve.html

100秒以下の時間相関を <0.007 /ton・day (90% CL). → small

I00秒~30日の時間相関を持つものは、A,Zの近い原子核の エネルギースペクトルを調査して制限 → negligible

核反応 (α, γ), (α, αγ), (n, γ) はどれも断面積が小さい。 → negligible

30日以上の寿命で 0v に近いピークを作るものは、4つの候補。

^{110m}Ag (T_{1/2}=250d), ²⁰⁸Bi(3.68×10⁵y), ⁸⁸Y(107d), ⁶⁰Co(5.27y)

GEANT4 はオーダー評価には十分使える。

地下での原子核破砕は小さい。 (GEANT4)

Estimated ¹¹⁰Ag production rate (aboveground) is ~30/day/400kg-¹³⁶Xe Measured BG rate (underground) is ~3/day/300kg-¹³⁶Xe

Limit on the $0v2\beta$ half life

 $(\chi^2 \text{ at } 2.2 \sim 3.0 \text{MeV})$

	χ² 78days	χ² 112days				
simul. fit	12.4	11.6				
0v+ ^{110m} Ag	16.5	13.1				
0v+ ²⁰⁸ Bi	15.8	22.7 🛆				
0v+ ⁸⁸ Y	16.7	22.2 🛆				
0v+ ⁶⁰ Co	65.0	82.9 🗙				
0v only	64.5	85.0 ×				
BG is likely to be ^{110m} Ag						

 $T^{0v}_{1/2} > 5.7 \times 10^{24} \text{ years at 90\% C.L. (78days)} \\ factor 5 \text{ improvement from DAMA} \\ T^{0v}_{1/2} > 6.2 \times 10^{24} \text{ years (KL-Zen 112days)} \\ (\text{ref. current best is 16 \times 10^{24} years from EXO-200)} \\ (R)QRPA (CCM SRC) \\ Phys.Rev.C79,055501(2009) \\ \langle m\beta\beta \rangle < 0.26 \sim 0.54 \text{ eV} @90\% \text{ C.L}_{18} \\ \end{cases}$

stable in time, but no strong discrimination yet

Limits on Majoron emitting double-beta decays

[8]Phys.Lett.B372,8,(1996), [12]Phys.Rev.C79,055501(2009), [13]Nucl.Phys.A818,139(2009)

Excluded region for the ordinary Majoron emitting decay (n=1)

KamLAND-Zen excludes the gap region of 2x10⁻⁵ to 9×10⁻⁵, and entire region above 4×10⁻⁷ is excluded in combination with the SN1987A limit.

"Ordinary Majoron emitting-decay" is much slower than

"light Majorana neutrino (>20meV) exchange"

KamLAND-Zenのライバルとの競争状況

Upper Limits on $0\nu\beta\beta$ Decay

Nucleus	Experiment	Exposure (kg-yr)	T ^{0v} 1/2 limit (yr) @ 90% C.L.	<m<sub>ββ> (eV)</m<sub>
⁴⁸ Ca → ⁴⁸ Ti	ELEGANT VI	0.025	> 5.8 × 10 ²²	< 3.5-22
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	Heidelberg-Moscow	35.5	> 1.9 × 10 ²⁵	< 0.35*
$^{82}Se \rightarrow ^{82}Kr$	NEMO-3	6.3	> 1.5 × 10 ²²	<1.5-3.1
$^{96}\mathrm{Zr} \rightarrow ^{96}\mathrm{Mo}$	NEMO-3	0.031	> 9.2 × 10 ²¹	< 7.2-19.5
$^{100}Mo \rightarrow ^{100}Ru$	NEMO-3	6.3	$> 2.7 \times 10^{22}$	< 0.8-1.2
$^{116}Cd \rightarrow ^{116}Sn$	Solotvina	0.14	$> 1.7 \times 10^{23}$	< 1.5-1.7
¹²⁸ Te→ ¹²⁸ Xe	(Geo chemical)	-	$> 7.7 \times 10^{24}$	< 1.1-1.5
¹³⁰ Te→ ¹³⁰ Xe	CUORICINO	19.75	$> 2.8 \times 10^{24}$	< 0.30-0.71
$^{136}Xe \rightarrow ^{136}Ba$	KamLAND-Zen	38.5	$> 6.2 \times 10^{24}$	< 0.26-0.54
	EXO-200	32.5	> 1.6×10^{25}	<0.14-0.38
$^{150}Nd \rightarrow ^{150}Sm$	NEMO-3	0.093	> 1.8 × 10 ²²	< 4.0-6.3

*but claim of signal by part of the Heidelberg-Moscow group (KKDC claim)

 $T^{0v}_{1/2} = 2.33^{+0.44}_{-0.31} \times 10^{25} \text{ yr}$ <math display= 0.18-0.43 eV @ 2 σ C.L. (QRPA model)

Sensitivities of running experiments are close to KKDC signal

→ ⁷⁶Ge (GERDA), ¹³⁰Te (CUORE), ¹³⁶Xe (EXO, KamLAND-Zen)

低原子炉運転期間の 地球ニュートリノ観測

目標

U,Thの分離測定

地球内原子炉への制限

マントル内の極端な分布に対する制限

(方向測定)

地表での熱流測定

宇宙化学:エンスタタイトコンドライト: Javoy et al., 2010:9-13 TW 地球化学:初期マントル岩石学:Palme & O'Neill, 2003:18-24 TW 地球物理:マントル対流:Turcotte et al., 2001:27-35 TW

ウラン、トリウム、カリウムなどは崩壊によってエネルギーを生成し、反電子 ニュートリノも放出するので、反ニュートリノ流量から熱生成量がわかる。

カムランドは、ウラン、トリウムからの反電子ニュートリノに感度がある。

2005年には、地球反ニュートリノを観測できることを実証

KamLAND collaboration, "Experimental investigation of geologically produced antineutrinos with KamLAND" Nature 436, 03980 (2005)

地球ニュートリノの観測結果

地熱への換算

観測結果と地球参照モデルは良く一致

放射性地熱合計21兆ワット

地熱全てを放射性熱とするモデルを98.1%以上の信頼度で排除

地球反ニュートリノ観測で放射性 物質起源の熱生成量測定に成功 (地球モデルを裏付け) ☆地球科学の

5大問題のひとつを解決

「地表での熱流量」―「放射性熱生成」 ↓ 「原始の熱」

地表での熱流量の全てが放射性物質起 源では無いことを証明、原始の熱が残 存し徐々に冷える地球を示した。

5 Big Questions: Prof. McDonough in Neutrino 2008

ニュートリノ観測が全ての鍵をにぎっている。

今は原子炉ニュートリノがほとんど来ない

原子炉がほぼ停止している現状は地球ニュートリノ観測に適している。 ただし、1月あたり1事象程度なので、継続的な観測が必要。

U,Th の分離測定や地球内原子炉への制限 マントル対流は一層か二層か?などの解明を目指す。

 ・ ・ ・ 市 が 生 ・ 下層マントルに し・ 下層マントルに し・ 下層マントルに し・ 市 が 集中で連鎖核分裂の可能性 地球物理学者の主張 ・ 地球物理学者の主張

極低放射能環境としてのカムランド

U: <3.5x10⁻¹⁸ g/g, Th: <5.2x10⁻¹⁷ g/g

DM-Ice計画

現状Nal 純度: U,Th 50ppt相当程度~I0×DAMA

KamLAND-PICO計画

~1000kg Nal(Tl) @ the center of KamLAND2

U,Th 10⁻¹⁷~10⁻¹⁸

徳島大実績:U I.Ippt,Th 0.6ppt ²¹⁰Pb純化 I/I0必要(るつぼ改良予定)

5

6

7

p(60MeV)+⁹Be→⁸Li+2p +中性子多数 n+⁷Li(遮蔽材)→⁸Li ⁸Li \rightarrow ⁸Be+e⁻+ $\overline{\nu}_e$ 2.6×10²²/year

Relative

۷e

Flux

KamLAND2への改造にかかるコスト(概算)

¹³⁶Xe調達量 平成23年まで調達分 430kg 現行計画 700kgまでのこり4.3億 1000kgまでのこり4.7億← 将来計画 消防の点検に同期すれば最小の KamLAND2への改良に必要なもの 停止時間で効果的に改良可能 LAB油 3000m³ 6億 発光材 (PPO) 1億 10億 1億 蒸留装置強化(LAB油に対応するため) 1億 新規バルーン 1億 集光ミラー 汎用化で必要となるもの 床補強、クレーン強化、 クリーンルーム、チムニー拡大 1億 3.5億 0.5億 低放射能空気改修 2億 電子回路(長期運転のため) 消防法にかかる点検(2015~16外側からの点検)関係 1.2億 外槽PMT 故障したものの交換 0.7億 水漏れ補修または純水装置補強 0.5億 内側からの点検(液体シンチレータを全て廃棄する必要有り)は消防との折衝で回避できた。 ただし、2016.6迄に外側からの点検(外水槽を空にする必要有り)が必要である。

まとめ

- ・ニュートリノのマヨラナ性の検証は、ニュートリノ質量機構・質量構造・
 宇宙物質優勢とも関連し重要な課題
- ・KamLAND-Zenは、開始間なしで世界的な競争に参入(現在純化中)、
 柳田予測の検証程度の感度を目指す。
- ・逆階層構造カバーには、エネルギー分解能の向上が必要(KamLAND2-Zen)
- ・原子炉がほぼ停止している現状は、地球ニュートリノ観測に有効(併存可能) U, Thの分離測定、極端なマントル非一様性、地球内原子炉の探索を目指す
- ・KamLANDを利用した、暗黒物質研究(DAMA/LIBRAの検証, KamLAND-PICO)や第4世代ニュートリノ探索(Ce-LAND, IsoDAR)、その他多種の 原子核での二重β崩壊研究(CdWO4結晶, CaF2結晶, Nd-LS)などの継続的 かつ多様な研究計画が進行中(導入部拡大が重要 → KamLAND2)