高エネルギーニュートリノ天文学 将来計画への誘い

Multi Messenger Paradigm

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- Flux predictions are based on CR and γ-ray observation.
- Status summary:
 - X No "surprises" yet.
 - Sensitivity has reached the level of "serious" models.
- Implications of neutrino limits on UHE CR sources:

M. Ahlers ARENA 2012

 pion production in CR interactions with ambient radiation

$$\pi^+
ightarrow \mu^+
u_\mu
ightarrow e^+
u_e \overline{
u}_\mu
u_\mu \ \pi^0
ightarrow \gamma \gamma$$

inelasticity:

$$E_{
u} \simeq E_{\gamma}/2 \simeq \kappa E_p/4$$

relative multiplicity:

$$K = N_{\pi^{\pm}}/N_{\pi^0}$$

pion fraction:

$$f_{\pi} \simeq 1 - e^{-\kappa \tau}$$

 $\omega_{\text{Fermi}} \simeq 6 \times 10^{-7} \text{ eV/cm}^3$ $\omega_{\text{UHECR}} \simeq 1 \times 10^{-7} \text{ eV/cm}^3$ $\omega_{\text{IC40}} \lesssim 1 \times 10^{-7} \text{ eV/cm}^3$

Why Ultra-high energy v?

UHECR による超局所宇宙の天文学? Yet far from conclusive!

UHECRs は local なのか?

大きな疑問として

磁場と化学組成と (local) ソースの分布という三つの不定変数の連立方程式を解けるのか?

UHECR は一体何ででてきているのか=組成 本当に local なのか否かを決める決定打である Nuclei は 10 Mpc しか走らないから

その測定は統計誤差でなく系統誤差で決まっている!!

Kotera, Allard, Olinto JCAP 10 013 (2010)

ニュートリノでは系統誤差が小さい

All proton case

鉄で放射されたけど、地球到達時の組成は 陽子・核混合組成

最高エネルギー領域で鉄として観測される ようにE_{max}を tune = Auger シナリオ

~1/30 GZK V 強度

The IceCube Neutrino Observatory

Digital Optical Module (DOM)

IceCube has been in a stable operation for more than 5 years

The UHE Event Selection Criteria at the final level

IceCube 2010-2012 (672.7 days) observation

Expected Background (atmospheric $v + \mu$ -bundle) 0.14 events

GZK v $0.5 \sim 4.0$ events

Energy of incoming particle < Energy-losses in detector < number of photo electrons (NPE)

Optimization based MC and MC verification based on 10% experimental 'burn' sample

A. Ishihara Neutrino 2012

Two events passed the final criteria

2 events / 672.7 days -

background (atm. μ + conventional atm. ν) expectation 0.14 events

Run119316-Event36556705

Number of Optical Sensors 312

Jan 3rd 2012

NPE 9.628x10⁴

cos(Zenith) -0.8658

Preliminary p-value 9.4x10⁻³ (2.36σ)

Super-nicely contained cascades!

Run118545-Event63733662 August 9th 2011 NPE 6.9928x10⁴

Number of Optical Sensors 354 cos(Zenith) 0.05 —

These zenith were obtained by

→ the "improved line-fit" used in the search process.

Caution!!

Large errors should be expected for these cascade-type events

IceCube UHE Sensitivity 2010-2012

- Significantly
 improved from
 the previous
 IceCube results
- The world's best sensitivity!
- Will constrain (or detect) the neutrino fluxes down to mid-strong cosmological evolution models

A. Ishihara Neutrino 2012

GZK-CMB v intensity @ 1EeV Measurements of the evolution

FIG. 2 (color online). Integral neutrino fluxes with energy above 1 EeV, J [cm⁻² sec⁻¹ sr⁻¹], on the plane of the source evolution parameters, m and z_{max} .

responsible for UHECRs

Constraints on the evolution

• A strongly evolved astronomical object (like FR-II radio galaxy) has already been disfavored

• any scenario involving sources evolved stronger than SFR will soon be ruled out by IceCube if we see no events in EeV rage.

Zmax

是非セミナーに呼んでください。 そこで詳細を議論しましょう。

今夏の国際会議

- Neutrino 2012 (June 4-9)
- ARENA 2012 (June 19-22)
- Centenary Symposium (June 26-28) by T. Gaisser
- Gamma 2012 (July 9-13)
- VHESS Symposium (August 6-8) by F. Halzen

- by A. Ishihara 🔶 1st announcement
- by S. Yoshida

by I. Taboada

- ida

超高エネルギーニュートリノは存在する

ARA-Collaboration

- ARA is an international Collaboration
 - 14 institutions
 - ~50 authors

THE UNIVERSITY WISCONSIN MADISON

Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole

(Lago of the

P. Allison,¹ J. Auffenberg,² R. Bard,³ J. J. Beatty,¹ D. Z. Besson,⁴ S. Böser,⁵ C. Chen,⁶ P. Chen,⁶ A. Connolly,¹ J. Davies,⁷ M. DuVernois,² B. Fox,⁸ P. W. Gorham,⁸ E. W. Grashorn,¹ K. Hanson,⁹ J. Haugen,² K. Helbing,¹⁰ B. Hill,⁸ K. D. Hoffman,³ M. Huang,⁶ M. H. A. Huang,⁶ A. Ishihara,¹¹ A. Karle,¹² D. Kennedy,⁴ H. Landsman,² A. Laundrie,² T. C. Liu,⁶ L. Macchiarulo,⁸ K. Mase,¹¹ T. Meures,⁹ R. Meyhandan,⁸ C. Miki,⁸ R. Morse,⁸ M. Newcomb,² R. J. Nichol,⁷ K. Ratzlaff,¹³ M. Richman,³ L. Ritter,⁸ B. Rotter,⁸ P. Sandstrom,² D. Seckel,¹⁴ J. Touart,³ G. S. Varner,⁸ M. -Z. Wang,⁶ C. Weaver,¹² A. Wendorff,⁴ S. Yoshida,¹¹ and R. Young¹³

(ARA Collaboration)

¹Dept. of Physics, Ohio State Univ., Columbus, OH 43210, USA. ²IceCube Research Center, Univ. of Wisconsin- Madison WI 53703. ³Dept. of Physics, Univ. of Maryland, College Park, MD, USA. ⁴Dept. of Physics and Astronomy, Univ. of Kansas, Lawrence, KS 66045, USA. ⁵Dept. of Physics, Univ. of Bonn, Bonn, Germany. ⁵Dept. of Physics, Univ. of Bonn, Bonn, Germany. ⁶Dept. of Physics and Astronomy, Univ. College London, London, United Kingdo ⁸Dept. of Physics and Astronomy, Univ. College London, London, United Kingdo ⁸Dept. of Physics and Astronomy, Univ. College London, London, United Kingdo ⁸Dept. of Physics, Univ. Univ. of Hawaii, Manoa, HI 96822, USA. ⁹Dept. of Physics, Univ. Of Wuppenal, Wuppernal, Germany. ¹⁰Dept. of Physics, Univ. of Wuppenal, Wuppernal, Germany. ¹¹Dept. of Physics, Univ. of Wisconsin Madison, Madison, WI, USA. ¹³Instrumentation Design Laboratory, Univ. of Kansas, Lawrence, KS 66045, USA. ¹⁴Dept. of Physics, Univ. of Delaware. Newark, DE 19716.

Radio Pulses from Neutrino EM cascade resembles a large negative excess charge moving exceeding speed of light (Askaryan effect) v>c/n $\theta_c \sim 56^{\circ}$ Compton scattering: $\gamma + e^{-} \rightarrow \gamma + e^{-}$ Positron annihilation: $e^+ + e^- \rightarrow \gamma + \gamma$

Cherenkov Radio Pulse measurement

ARA 37 geometry

SOUTU WM **Components of a single station** D ASKARYAN RADIO ARRAY

 5holes 200m depth 16+2 antennas

⁽⁸ h-pol, 8 v-pol, 2 cals)

R&D 2010-2011 BE KERYEN REDUCERREY Deep Radio Pulser – Radio Attenuation length

R&D 2010-2011 event reconstruction from the pulser ASKARYAN RADIO ARRAY

time, ns

R&D 2010- 2011

2012 polar season Drilling and deployment #1 station

ARA 2012 (Japan)

- ・ 台湾グループと共同で、ARA station 2 の アッセンブリと較正(来月からスタート)
- GPS の組み立て・設置

電波実験室の整備

- 電波暗室
- スペクトルアナライザー
- ネットワークアナライザー

ARA-37

Schedule Toward ARA37

NSF (MRI-R2) grant funded ~\$2,000,000 Total \$3,000,000 (3years) for Phase I+II Kickoff meeting March, 2010

Phase I: Testbed (2010-2011) A prototype antenna station closest to IceCube lab. Measure RF noise off the IceCube Deploy a deep pinger in an IceCube final string measure refraction index in the shallower ice Develop Hpol + Vpol dipole antenna

Phase II: ~10 km² Radio Antenna Array (2011-2013) Testing communication + DAQ, Turbine, Inter-station sync. finalize the antenna + front-end readout

Phase III: 2013~

~200 km² Radio Antenna Array

今、ここの段階

2012-13: ARA phase-II 10km³ Detector

Budget Breakdown

日本グループ責任分

Hardware only - Software, 人件費除く

1 station あたり

Detector sync. (時間同期系) 250万円 Data comm. (データ伝送系) 150万円 Radio Detector (電波検出器) 1000万円

日本グループ 12台の commit

Excerpt from the collaboration breakdown sheet

116	CAL-	2	Microcontroller		2	ea	\$200	\$400		UMD	UMD	proci
117	CAL-	3	Internal splitters/combiners	ZX10-2-12+	2	ea	\$60	\$120		UMD	UMD	procu
118	CAL-	4	downhole RF cable	LDF2-50 3/8" diameter	2	ea	\$1,320	\$2,640		UMD	UMD	procu
119	CAL-	5	Hpol borehole pulser antennas		4	ea	\$500	\$2,000	rough costs	UH	NTU	build
120	CAL-	6	Vpol borehole pulser antennas		4	ea	\$500	\$2,000	rough costs	UH	NTU	build
121	CAL-	7	internal RF cable parts		2	est	\$200	\$400		UMD	UMD	procu
122	CAL-	8	5V supply	LMZ1200 series switcher	2	ea	\$100	\$200		UMD	UMD	procu
123	CAL-	9	TTL boost	TTL-BOOST	2	ea	\$50	\$100		UMD	UMD	procu
124	CAL-	10	Noise source	NMA2510-2T	2	ea	\$1,825	\$3,650	small quantity quote	UMD	UMD	procu
125	CAL-	11	Feedthru adapters	SM4233	8	ea	\$50	\$400		UMD	UMD	procu
126	CAL-	12	pulser module	RFPOCV3	2	ea	\$200	\$400	engineering estimate	UMD	UMD	build
127	CAL-	13	pulser boost amplifier	ZKL-1R5	2	ea	\$150	\$300		UMD	UMD	procu
128	CAL-	14	antenna TX RF cable	LMR-600	8	ea	\$35	\$280		UMD	UMD	procu
133	Subtotal			SUBTOTAL				\$14,290		UMD	UMD	
134	ARA statio	n cable (A	ASC)									
135	ASC	1	power connector plug	FG24PN	1	1 ea	\$85	\$85		KU	KU	procu
136	ASC	2	testbed connector backshell		1	1 ea	\$150	\$150	estimate	KU	KU	proci
137	ASC	3	ferrites		20	10 ea	\$3	\$60	rough costs	KU	KU	proci
138	ASC	5	Junction box plug	MS3312 type	3	ea	\$40	\$120		KU	KU	proci
143	Subtotal			SUBTOTAL				\$415		KU	KU	
144	data-archiv	ing syste	m (DAS)									
145	DAS-	1	Comms TX		1	ea	\$250	\$250	guess	Chiba	Chiba	procu
146	DAS-	2	Comms TX antenna + mount		1	ea	\$100	\$100	guess	Chiba	Chiba	procu
147	DAS-	3	Comms RX antenna + mount		1	ea	\$100	\$100	guess	Chiba	Chiba	proci
148	DAS-	4	Comms RX		1	ea	\$250	\$250	guess	Chiba	Chiba	proci
153	Subtotal			SUBTOTAL				\$700		Chiba	Chiba	

IceCube and ARA: Milestone

究極の目標 超高エネルギー帯における未知の宇宙像 「なぜ宇宙はかくも高いエネルギーの粒子を産むのか?」

年表 2001-2017

基本的に5ヵ年計画

EeV

PeV (sub-EeV) detector

- 日本が旗を掲げるドンピシャリのタイミング
- ・宇宙線起源を本当に解明するチャンスがある。

vの優位性は絵に描いた餅ではない

日本として手を挙げてコミットしませんか?

今日、最も言いたかったこと

Before Neutrino 2012...

ニュートリノねえ。いいんだけど、どうせ見つからないんだろう、吉田くん

Now

いや、あったんですよ! 砂漠じゃなかったんです。

この結果を出した UHE 解析は日本が主要な寄与。 このモーメンタムを生かさない手はない。 しかも contribution する場所はたくさんある。

(Published) Reference

- Calculations of UHE v propagation and the tactics for their detection by IceCube
 SY et al Phys.Rev.D 69 103004 (2004)
- The detailed description of GZK v search by IceCube and the 1st results using 2007-2008 data IceCube collaboration, Phys.Rev.D 82 072003 (2010)
- The follow up results using 2008-2009 data: The world tightest limit as of today

IceCube collaboration, Phys.Rev.D 83 092003 (2011)

- An analytical approach to constrain UHECR origin with ultra-high energy ν flux

SY and A.Ishihara, Phys.Rev.D 85 063002 (2012)

