ALPACA

Masato Takita ICRR, the University of Tokyo for the ALPACA collaboration

CRC town meeting @Research Complex, Kashiwa, U of Tokyo, 20/Oct/2018

The ALPACA Experiment

Andes Large area PArticle detector for Cosmic ray physics and Astronomy

The ALPACA Collaboration

浅羽孝典,日比野欣也,堀田直己,片寄祐作,加藤千尋,加藤勢,川田和正, 小島浩司, Mayta R., Miranda P., 三井嘉子,宗像一起,中村佳昭,西澤正己, 荻尾彰一,大西宗博,大嶋晃敏, Raljevich M., Rivera H., 齋藤敏治, 塔隆志, 佐古崇志,佐々木琢朗,千石由佳子,柴田祥一,塩見昌司,Subieta M.,田島典夫, 瀧田正人,多米田裕一郎,田中公一,Ticona R.,土屋晴文,常定芳基,有働慈治, 若松海帆,八木沢夏穂

横浜国大工,神奈川大工,宇都宮大教,信州大理,東大宇宙線研,愛知工大工, 大阪市大理,サン・アンドレス大,国立情報学研,中部大工,都立産業技術高専, 日本大生産工,理研,大阪電通大工,広島市大情,原子力機構

3

Outline of the ALPACA experiment

- 1)Experimental site: 4740m above sea level, near La Paz in Bolivia Expected budget -> ~ 5 M (AS+MD) USD
 - Muon Detector ~ $5400m^2$ (underground water Cherenkov type) AS Array ~ $83,000m^2$ (~ $401 \times 1m^2$ plastic scintillation detectors)
- 2) Target physics and astrophysics (AS + MD)

10-1000 TeV γ astronomy

(point & extended sources, PeVatron search, origin of CR)

CR rejection power: ~ 99.9 % @100TeV

Advantage to extended sources!

 γ -ray point source sensitivity : ~15 % Crab/yr @30TeV

CR anisotropy, Chemical composition of CR around Knee,etc

Costs & Construction plan of ALPACA

- AS + MD =5億円 + Running cost 1億円
- Year 1: Preparation
- Year 2 : Construction of MD
- Year 3: Construction of AS
- Year 4: Start data-taking
- Observation will continue (5 10 years)
- Cf: Detectors (Japan) + Infrastructure(Bolivia)

Site Survey

UMSA CR-Observatory 5200m asl

TUPAC KATAR

ホセ・アルサベ

ラパス国際空港 Aeropuerto Internacional El Alto

T

Google

4400m

41

UMSA Cosmic Ray Laboratory

- ✓ Mt Chacaltaya(5,200m asl)
- \checkmark CR Lab at the highest altitude
- ✓ Discovery of charged pion
 C. F. Powell et al. in1947
 (1950 Nobel Prize)

Main purpose of ALPACA

- 100 TeV γ-ray astronomy in South
- Locating origin of comic rays

by detecting cosmic 100 TeV gamma rays from cosmic ray accelerator in our galaxy: PeVatrons!

Origin of Cosmic Rays at the Knee

 $x^{2}F_{j}(x,E_{p})$ Kelner et al., PRD 74, 034018 (2006)

PeVatron = CR accelerator up to PeV region Should be in our galaxy or very nearby extragalaxy, due to photon absorption!

Why in Bolivia

- Flat land at high altitude: (> 4000m)
 Cosmic rays absorbed in atmosphere before reaching sea level
- Galactic Center: Observable in the southern hemisphere (not in the northern hemisphere) Most promising candidate of the origin of cosmic rays
- Long-term collaboration between Bolivia and Japan (Good infrastructure: Electricity, water, road,...)
 Since 1962 in the field of cosmic rays, for example, BASJE

Experimental Cite : Cerro Estuqueria (500m x 500m flat within ~+- 1 deg.) 4,740 m above sea level (16° 23' S, 68° 08' W)

ALPACA exposure (hours/year)

ALPACA exposure (θ<45[°])

- Assuming θ <45°
- Geometrical decrease $(\cos\theta)$ is taken into account

ALPACA exposure (hours/year)

- Galactic Center, RX J1713 : >2,000 hours/year (θ <45°)
- >1,000 hours/year for Crab
- θ <60° allows 3000 hours/year
 - Effects on threshold energy, resolution must be studied

ALPACA exposure (hours/year) $\theta < 60^{\circ}$

Schematic view of ALPACA

Performance of ALPACA air shower array

Location:

4,740 m above sea level (16°23'S, 68°08'W)

of scintillation detectors
Effective area
Modal energy
Angular resolution
Energy resolution
Field of view

1 m² x 401 detectors ~83,000 m²

~5TeV

- ~0.2° @100 TeV
- ~20-25% @100TeV ~2 sr

of muon within <100m from core

γ/ et /μ

 $\simeq 50~\mu$ for 100 TeV proton

 \sim 1 μ for 100 TeV γ

Muon detector

of Muons vs. Energy

ALPACA full MC simulation (AS $83000m^2 + MD 5400m^2$) Muon cut optimized, assuming Crab-like spectrum at δ =-30°

- Half of γ-ray events below 10 TeV have no muon signal (No muon events are plotted as 0.2)
- ✓ Blue lines indicate optimized muon cuts

Survival Ratio After Muon Cut

ALPACA full MC simulation (AS $83000m^2 + MD 5400m^2$) Muon cut optimized, assuming Crab-like spectrum at $\delta = -30^\circ$

- ✓ Cosmic rays will be rejected by ~99.9%
 @100TeV
- ✓ Gamma rays will be kept over 90%
 @100TeV

ガンマ線点源に対する感度 10³ [GeV] [TeV] [PeV] Past 10² Present s-1 Crab flux Future Tibet AS Integral Flux x E (eV cm⁻² CASA-MIA 10¹ MAGIC **VERITAS** EGRET H.E.S.S. HAWC Milagro 10⁰ FERMI 10⁻¹ **ALPACA*** СТА 5 sigma or 10 events 50 hours or 1 year (Wide FoV instrument) 10⁻² ' 10⁸ 10¹⁰ 10¹¹ 10¹⁴ 10¹⁶ 10¹³ **10**¹⁵ 10⁹ 10¹² Energy (eV) CTA Review by Kubo (JPS 2015) *Based on MC Simulation For the Tibet AS+MD M.Daniel, Proc. of 28th Texas Sympo. (2015)

Target γ Sources

- Galactic Center
- Fermi Bubbles
- Young SNR
- Other Galactic Point-like Sources
- Nearby Extragalactic Sources

Galactic Center as PeVatron?

23

Fermi Bubbles

- sub-PeV γ rays expected, if sub-PeV v's detected by IceCube are of hadronic origin.
 Formi Dubbles: Very extended (0.8 m) + max
- Fermi Bubbles: Very extended (~0.8sr) γ-ray sources difficult for IACTs to cover them all.

Bubbles observed by Fermi-LAT

Young SNRs

Young SNRs

Young SNRs

Other Galactic Sources

0

10

20

- \checkmark More than dozen sources
- ✓ Many sources are dark in other wave length
 → Dark particle accelerator
- ✓ Many candidate of PWN (excess is located near pulsar)

Aharonian et al, ApJ, 636, 777 (2006) ✓ Diffuse γ from Galactic plane

350

29

1 (deg)

340

Nearby Extragalactic Source CenA

Aharonian et al, ApJ, 695, L40 (2009) Sahakyan, et al, ApJ, 770, L6(2013) ✓ Distance: 3.8Mpc very nearby!

- ✓ Relativistic jet
- ✓ Flat spectrum above TeV region?
- ✓ No significant time variation?

 $\delta \sim -43^{\circ}$

30

Other research themes

- CR anisotropy @ >TeV region in south (Complementary to IceCube)
- The Sun's shadow in south

Chemical composition of VHE CR (Knee)
 (AS+MD cf: Other AS experiments &LHC-f)

ALPAQUITA

- Prototype array with 100 SDs
 - 20% coverage of full ALPACA
 - No Muon Detector at this stage
- Establishing procedures in Bolivia
 - Construction
 - Import/Export
 - Infrastructure
- Some sciences
 - Sun shadow
 - CR Anisotropy (TeV region)
 - Bright gamma-ray sources?

ALPAQUITA & infrastructure

- Refurbish power line to the Chacartaya observatoty
- Fence
- DAQ room, workshop and guardians hut
- Water system for life and MDs

Power and water

ALPACA - WATER SISTEM

ALPAQUITA schedule

	7月	8月	9月	10月	11月	12月	2019年1月
物品輸送 (20ftコンテナx2)	横浜			チリ	↓ 観; サ·	則 イト	
7kV送電線			\leftrightarrow				
フェンス (160m x4)			-				
エレキハット/ 番人小屋				ンフラ整備	→		
検出器架台				•			
避雷針/ WiFiアンテナ					+		
検出器 組み立て/設置					+	装置建設	
DAQ/較正						+	

• 2018年度末にテスト観測開始、2019年度初期に最終調整、の予定

Southern Gamma-ray Survey Observatory (SGSO) alliance

<u>https://www.sgso-alliance.org/SGSOWiki/doku.php</u>:メーリングリストは誰でも参加可

- 南半球高山に空気シャワーアレイを作り、24時間広視野ガンマ線観測を提 案するグループの集まり
 - HAWC, LATTES, ALTO, STACEX, ALPACA
- 具体的なサイト、装置デザインは未定
 - 各小グループがそれぞれの特徴を紹介し合っている段階
 - **GEANT4 code**を共有して最適検出器を検討する方向
 - ALMAサイト、アルゼンチンのQUBIC(CMB実験)サイト、等を検討
- 活動内容
 - サイエンスケースをまとめた white paperを準備中
 - 2020年の decadal surveyにサイエンスとしての重要性掲載を目標
 - 国際協力で「一つの」理想的な装置を作ろう
 - CTA Southと予算競合しないように
- ALPACAとの関係
 - SGSOの一員である。high energyに特化して一歩先に進んでいる。
 - ALPACAをSGSOのR&D拠点にする?

Thank you for your attention!

ALPAQUITA (~2/10 AS) will be constructed in FY2018

Summary

ALPACA:

- 1)Experimental site: 4740m above sea level, near La Paz in Bolivia Expected budget -> ~5 M USD AS+MD + Running=5 + 1 億円 Muon Detector ~ $5400m^2$ (underground water Cherenkov type) AS Array ~83,000m² (~ 401 x $1m^2$ plastic scintillation detectors) 2) Target physics and astrophysics (AS + MD)10-1000TeV γ astronomy (point & extended sources, PeVatron, etc) CR anisotropy, Sun shadow, CR chemical composition, etc
- 3) ALPAQUITA (2/10 scale ALPACA AS, in FY2018)

End