LISA

Laser Interferometer Space Antenna

和泉 究(宇宙科学研究所) CRC タウンミーティング(2018/Oct/20)

- •本案件は比較的最近に発案されました。
- => 未決定・成熟な項目が多くある(資金源、支持母体、etc)
- CRCでの議論を通じて:

概算要求をするにしろ宇宙研内部の予算枠などで賄うにしろ まずはCRCにて幅広く意見・コメントを募り、コミュニティでの 理解を得たい。

LISAとは

- LISA: Laser Interferometer Space Antenna
- スペース重力波望遠鏡計画
- ・ESA主導で現在開発が進行中
 - Cosmic vision 大型ミッションL3として採択(2017年)
- 低周波数 1mHz -100mHz帯の重力波をターゲット
- •2034年の打ち上げ予定
- •3台の人工衛星をほぼ正三角形に配置
 - 1辺250万km、6つのレーザーリンクを使ったレーザ干渉計
 - ドラッグフリー制御による微小加速度雑音環境
 - トランスポンダーによる各レーザーリンクの位相同期
- 加速度雑音の検証、その他技術実証が
 LISA path finder (2015年打ち上げ)にて完了

人工衛星軌道

- ヘリオセントリック軌道
 地球ないこの (印度) 同時な(す)
- ・地球から20度程度遅れた位相
- この軌道に滞在できるのは10 年が最長(推進剤リミット)
- •太陽光からの温度変化を減少

Sun

1 AU

ハードウェア概観

前哨衛星LISA path finderによる 要求される加速度雑音の達成

5

重たいものを、 遠くまで

10³-10⁷ Msolar のブラック ホール連星がSN10以上で z>15まで見渡せる。

期待されるサイエンス

- ・地上の重力波望遠鏡(1Hz-1kHz)では観測の難しい連星系が観測対象となる。
 - 1. 天の川銀河内での連星(WDを含む)形成・進化の研究
 - 2. SMBHの起源・進化・合体の歴史の研究
 - 3. EMRI*を使った銀河核周辺の調査
 - 4. 恒星質量BHの起源に迫る
 - 5. BH時空物理の詳細検証
 - 6. Standard Siren を用いた宇宙論への貢献
 - 7. 宇宙背景重力波輻射の探査
 - 8. バースト重力波と予期せぬ重力波源の探査

他波長・マルチメッセンジャー観測

LISAの観測から早い段階でアラート を出すことが可能。 ⇒地上の重力波検出器 ⇒その他電磁波観測 へ場所と合体時刻を予告できる。

B-DECIGOは0.1Hz帯に感度を持つ => 相補的な関係

スケジュール

Event	From	То	Status
Phase 0 instrument contributions	2017-JUL	2017-NOV	Done
Mission Definition Review (MDR)	2017-NOV-27		Done
Phase A (mission & instruments)	2018-APR	2019-DEC	
Mission Consolidation Review (MCR)	2019-FEB	2019-MAR	
Mission Formulation Review (MFR)	2019-OCT	2019-DEC	
Adoption	<=2024		
Implementation (Phase B2/C/D)	8.5 years		
Launch	2034		
Transfer & Commissioning	2.5 years		
Operations	4 years		
Extension (TBD)	6 years		10 years of total science

想定される必要経費

- *総額~1200 M€
- * うちNASA負担~200 M € (推定) 望遠鏡部、スラスタ、レーザーユニット。
- *日本の負担分~2M€(2億円程度)を想定していた。
- *現在、金額の見積もりの詳細化を進めている

=> 大幅に日本の必要経費額が増額する可能性あり(総合~10億円)。 *初期3年程度の技術検討は宇宙理学委員会での予算を基に活動したい。

LISA全体の体制

- ESAが主体
- NASAをメジャーパートナーとしたシステム
- 各国の研究者はLISA consortium というコミュニティに参加する ことでLISAに貢献。
- Consortium lead: Prof. K. Danzmann (AEI/Max Planck Institute)
- LISA consortium は今年8月の段階で919名 (アソシエートメンバー+フルメンバーの総計)
- •約半数がフルメンバー。その内訳は以下
 - LIG(LISA機器開発グループ):181名
 - •LDPG(LISAデータ処理グループ):72名
 - •LSG(LISAサイエンス検討グループ):207名

日本機器開発グループの体制と人員

- 総員11名(total FTE = 約2 人)
- •参加機関:宇宙研、国立天文台、東大理、電通大
- ・グループリード:和泉(宇宙研)
- ・新しいグループ(今年発足)
- •11名全員がLISA consortium メンバとして今月(10月)正式に 承認された。
- ・現在、宇宙研・宇宙理学委員会にLISAへの機器開発貢献を検討 するワーキンググループの設立提案を申請中。
- ・重力波検出の要となる光検出器や周辺のハードウェア 開発をLISAへ提案しつつその検討を今年度内に本格化する予定。

- •(A)四つ分割光検出器の開発
 - 重力波信号抽出およびビームアラインメントに使用
 - 広い帯域にわたり超低電流雑音の達成
- •(B) 電気信号線ハーネスの開発
 - 重力波信号・制御信号を伝送する信号線バンドル(光ファイバ含む)
 - 低機械振動、非線形な機械応答の低減、定常重力勾配の除去が要求。

•(C) きぼう実験棟搭載のJ-SSODを使用した電子部品・光学部品の軌道 上運用試験

貢献項目(A) 4つ分割光検出器の開発

- 数10pWのレーザー光から重力波信号を抽出
 =>低雑音(2 pA/Hz^{1/2} @ 5-25 MHz)
- 衛星間距離のドリフトによる
 ドップラーシフトを考慮、
 ニ>広帯域で感度を持たせる。
- InGaAsフォトダイオード
- 2mm大口径ながら低い10pF程度の
 低いジャンクション容量、低暗電流が必要
 ⇒現在、企業と打ち合わせ中
- 低雑音、広帯域、低消費電力
 プリアンプが必要

4分割ダイオード例 ©浜松ホトニクス

貢献項目(C) JSSODを使用した電子・光学部品の軌道上試験

- •国際宇宙ステーション日本実験棟(きぼう)に搭載されたエアロックより小型人 工衛星を低軌道上へ投入することが可能。JSSODと呼ぶシステム。
- •エアロックを使った軌道投入システムは日本独自。
- NASA GSFCと検討中。LISAレーザー・光検出器などの軌道上運用試験を目指す
- •比較的安価(~1,000万円)、短いリードタイム(1-1.5年)

Japan Experimental Module (JEM)

Graphic: http://www.benesse.co.jp/tane/project/iss.html

Robotic arm + airlock = interesting

国内でのLISA活動の立ち位置

国内重力波分野には2つの大型計画が存在。

• 地上重力波望遠鏡KAGRAとの関係:

「KAGRAによる重力波天文学の創成を第一優先とし、その後、 宇宙重力波望遠鏡によって重力波天文学を展開する」 というJGWC(重力波研究者コミュニティ)での同意。

• 宇宙重力波望遠鏡B-DECIGOとの関係:

観測周波数帯が異なるため、相補的な関係。

LISAへの小規模貢献は今後の国内宇宙重力波望遠鏡の研究・開発の発展・維持 に繋がる。LISA参加を通じて今後の宇宙重力波望遠鏡計画に必要となる国際協 調の下地を強化する。

KAGRA(credit:NAOJ)

B-DECIOG(J, Phys.: Conf. Ser., 2017)

まとめ

- •2034年打ち上げを目指して宇宙重力波望遠鏡プロジェクトLISAが現在 進行中。
- •日本からLISAへの小規模ながらも重要な機器開発貢献を真剣に検討している。
- ・現在、宇宙理学委員会にWG設立申請を提案中。
- 今年度内の活動本格化を目指している。