The ARA-experiment The Search for cosmogenic neutrino at the South Pole

> Aya Ishihara Chiba University CRC Future Project Symposium 2010.9.16

CRC将来計画symposium

Outline

Status of the IceCube detector - Expected EHE (>10⁶ GeV) neutrinos From the IceCube to the ARA (Askaryan Radio Array) experiments - What shooting for - Where we are now

The IceCube Detector

Extremely High Energy Neutrino Targets

Top-down

Various GZK models consistent within a factor of 2-3

5

Simple Detector <u>– Simple Analysis</u>

Cuts are decided without looking at data sample background 0.1 per full livetime

104

103

10²

10

10-2

10-3

104

10-5

10-6

102

10

10

10-2

10-1

10-5

10-6

IceCube baseline Sensitivity

The same analysis method/systematics applied on the full IceCube MC

Signal Event Distributions

Expected # of EHE signal events

Models	IC40 # of events (333days)	IC80(full) # of events (3 years, by 2012/5)
GZK1 (Yoshida et al)	0.57	3.1
GZK2 Strong Evol. (Sigl)	0.91	4.9
GZK3 (ESS with W _L =0.0)	0.29	1.5
GZK4 (ESS with W _L =0.7)	0.47	2.5
GZK5 (Ahlers max)	0.89	4.8
GZK6 (Ahlers best fit)	0.43	2.3
Z-Burst	1.03	5.1
Top Down(SUSY)	5.68	31.6
Top Down(QCD)	1.19	6.3
W&B(evol)	3.7	24.5
W&B(no evol)	1.1	5.5

The highest NPE event by 2009/5 10⁶ per livetime $0.4 < \cos \theta < 0.45$ 10⁵ 104 10^{3} 10^{2} Number of events 10 4 10 10-2 10 10 10⁻⁴ 10⁻¹ 10-7 10 10-4 10 3.5 7.5 45 5.5 6.5 7 5 log_ NPE GZK v induced through going u Slice at $5.4 \le \log_{10} \text{NPE} \le 5.5$ NPE Atm. µ bundle >10 PeV muon! Atmu bundle 2 8 a 10⁻¹ 10-2 10-3 5.5 GZK through going u 10 10-1 10⁻³ Run 112115 Event 12591975 10-4 104 104 10-5 10-5 10-5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 CRC将来計画symposium 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10* 5 5.5 6 6.5 7 9 9.5 10 7.5 8.5 log, in-ice energy /GeV log__ in-ice energy sum /GeV log_ in-ice energy /GeV

How to Cook *the Best*-Physics with the IceCube EHE ??

Primary Ingredients:

- Wants to know the Highest E CR sources!
- GZK models are solid if the highest CR is proton
 - IceCube sees them in a couple of years

New Recipe Needed for • Enlarge detection volume by x10 (~10 GZK events/year) • In a cost effective way • Still reliable

The Largest yet a Sparse Detector

No new recipe needed, old cook books tell us -

【エアレイション】英語 aeration 空気を抱き込ませること。振るったり、かき混ぜて、材料や生地に 空気を充分に抱き込ませること。または、発酵において、生地を膨 らませること。

Detector density is decided by photon's scattering and absorption lengths

IceCube@380nm: Scatt. ~25m, Abs. 100 ~150m Vertical 17m, Horizontal 125m

@380GHz: Attenuation length >~1500m Thus detector separation as large as ~1.5km!

Radio Pulses from Neutrino EM cascade resembles a large negative excess charge moving exceeding speed of light (Askaryan effect) v>c/n $\theta_c \sim 56^{\circ}$ Compton scattering: $\gamma + e^- \rightarrow \gamma + e^-$ Positron annihilation: $e^+ + e^- \rightarrow \gamma + \gamma$

IceCube

ARA

in-situ measurement
of RF property of ice
Attenuation length
Noise
Birefringence

RICE

 Construction
 Solid EHE technique for calibration

Vertex Reconstruction
 Surface noise
 Detector calibration

The ARA collaboration

Vrije Universiteit Brussel

University Coll. London

Nat' I Taiwan Univ DESY, Zeuthen Universität Wuppertal

> Chiba University

University of Kansas University of Maryland University of Wisconsin-Madison University of Hawaii U Delaware Ohaio State Univ. Univ. Alabama Colorado St. Univ. Penn St. Univ. University of Nebraska

Antarctica

The IceCube collaboration

Universite Libre de Bruxelles Vrije Universiteit Brussel Université de Mons-Hainaut Universiteit Gent University Utrecht

University of Oxford

Universität Mainz Humboldt Univ., Berlin DESY, Zeuthen Universität Dortmund Universität Wuppertal MPI Heidelberg RWTH Aachen Uppsala University Stockholm University

Chiba University Univ Alaska, Anchorage UC Berkeley UC Irvine Clark-Atlanta University U Delaware / Bartol Research Inst University of Kansas Lawrence Berkeley National Lab University of Maryland Pennsylvania State University University of Wisconsin-Madison University of Wisconsin-RiverFalls Southern University, Baton Rouge

Univ. of Canterbury, Christchurch

Askaryan Radio Array Design

symposium

Current Status

Ongoing projects by Japan

- Inter-site synchronization
- Wireless LAN for comm.
- Antenna response function calibration
- IceCube ARA coincident event detection

and

working hard to find the first EHE neutrino with IceCube!

Phase II: ~10 km² Radio Antenna Array (2011-2013)

Testing communication + DAQ, Turbine, Inter-station sync. finalize the antenna + front-end readout

Phase III: ~2014

~100 km² Radio Antenna Array

Working projects / Budget schedule

Full Scale Request 2011~2012

Wireless communication Inter string synchronization Antenna response function calibration Antenna + Readout

\$1M

Wireless communication system The experimental set-up

GPS clock sync calibration

controller,

shield box

Summary

- ARA project has been started Test bed system (2010-2011), initial phase (~2013)
- Sensitivity reaches to the level that ARA distinguishes various GZK models and even the most pessimistic iron composition case with ~0.2millon\$/km²
- IceCube 3year expects to see a few GZK events by mid-2012
- IceCube's solid optical Cherenkov method calibrate ARA detector